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 20 
Abstract. Climate change impacts forest functioning and dynamics, but large uncertainties remain regarding the 

interactions between species composition, demographic processes and environmental drivers. While the effects of 

changing climates on individual plant processes are well studied, few tools dynamically integrate them, which 

precludes accurate projections and recommendations for long-term sustainable forest management. Forest gap 

models present a balance between complexity and generality and are widely used in predictive forest ecology, but 25 

their lack of explicit representation of some of the processes most sensitive to climate changes, like plant 

phenology and water use, puts into question the relevance of their predictions. Therefore, integrating trait- and 

process-based representations of climate-sensitive processes is key to improving predictions of forest dynamics 

under climate change. 

 30 

In this study, we describe the PHOREAU model, a new semi-empirical forest dynamic model resulting from the 

coupling of a gap model (FORCEEPS), with two process-based models: a phenology-based species distribution 

model (PHENOFIT) and a plant hydraulics model (SurEAU), each parametrized for the main European species. 

The performance of the resulting PHOREAU model was then evaluated over many processes, metrics and time-

scales, from the ecophysiology of individuals to the biogeography of species. 35 

 

PHOREAU reliably predicted fine hydraulic processes at both the forest and stand scale for a variety of species 

and forest types. This, alongside an improved capacity to predict stand leaf areas from inventories, resulted in 

better annual growth compared to ForCEEPS, and a strong ability to predict potential community compositions.  

 40 

By integrating recent advancements in plant hydraulic, phenology, and competition for light and water into a 

dynamic, individual-based framework, the PHOREAU model, developed on the Capsis platform, can be used to 
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understand complex emergent properties and trade-offs linked to diversity-effects effects under extreme climatic 

events, with implications for sustainable forest management strategies. 

 45 

1 Introduction 
 
Forests cover approximately 30% of the Earth's land surface, hosting the majority of terrestrial biodiversity. They 

are crucial carbon sinks (Pan et al., 2011), play a vital role in climate regulation (Chapin III et al., 2008), and 

provide essential ecosystem services to humans (Nadrowski, Wirth and Scherer-Lorenzen, 2010). However, 50 

climate change poses significant risks to forests, including disruptions to forest dynamics (McDowell et al., 

2020a), as increasingly extreme environmental conditions have profound effects on forest structure and 

composition as well as on forest functioning, including massive mortality events (Allen, Macalady, Chenchouni, 

Bachelet, McDowell, Vennetier, Kitzberger, Rigling, Breshears, E.H. (Ted) Hogg, et al., 2010). Such impacts are 

assessed through experimental (Gavinet, J. Ourcival and Limousin, 2019; Decarsin et al., 2024) and empirical 55 

(McDowell et al., 2020a) studies. Yet, although such approaches are key to understanding and anticipating forests’ 

response to climate change, they cannot cover the entire spectrum of environmental contexts, species 

compositions, and forest history. By filling those gaps in knowledge, forest models represent key complementary 

tools to effectively investigate the combined impacts of species composition and climate change on forest 

dynamics and functioning (Bugmann, 2001; Maréchaux et al., 2021). 60 

  

Yet the robustness of such models — most often calibrated on historical data — is often questioned when used to 

make predictions for the uncertain transition period of the coming decades (Parmesan, Morecroft and Trisurat, 

2022; Van der Meersch et al., 2025). Focusing on Europe, climate projections generally describe drier conditions, 

with might lead to a shift from light to soil water as the main limiting resource over which individual trees compete 65 

(McDowell et al., 2020a). In this context, the accuracy of forest projections might depend in large part on whether 

models are able to account for causal relationships between water stress and stand composition (Brodribb et al., 

2020; McDowell et al., 2022; Van der Meersch et al., 2025). For example, instead of postulating general a priori 

species complementarity effects in resource use, process-based modelling must strive to capture how individual 

trees harness and compete for light and water in natura. 70 

 

Furthermore, depicting and understanding the role of diversity in ecosystem functioning has been a key focus of 

ecological studies for at least two decades (Kinzig, Pacala and Tilman, 2002; Hooper et al., 2012; van der Plas, 

2019). In forest ecosystems, the importance of the role of diversity — both structural and compositional — on 

productivity and wood biomass has been firmly established by numerous studies over a wide range of conditions 75 

and methods (Nadrowski, Wirth and Scherer-Lorenzen, 2010; Morin, 2011; Paquette and Messier, 2011; Liang et 

al., 2016; Ratcliffe et al., 2017). In addition, there is some evidence that tree diversity could modulate the resistance 

and recovery of forest productivity under stress or disturbance (Ammer, 2019; Jourdan, Lebourgeois and Morin, 

2019; Schnabel et al., 2021; Blondeel et al., 2024), although the level of consensus varies with the type of stress 

or disturbance considered (Decarsin et al., 2024; Messier et al., 2022). Yet despite these patterns, there remains a 80 

scarcity of data regarding the actual differences in functioning of monospecific and mixed forests, and their relative 

response to changing climate conditions. In fact, while the diversity-productivity relationship is well evidenced — 

a global meta-analysis has shown mixed-species stands were on average 25% more productive than their respective 
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species’ monocultures (Zhang, Chen and Reich, 2012) —, data regarding the link between species diversity and 

the ability to withstand extreme climatic events is more scarce and contradictory. Where some studies have linked 85 

forest diversity to a lessened sensitivity of tree growth to drought (Lebourgeois et al., 2013; Anderegg et al., 2018; 

Serrano-León et al., 2024), others have found this relationship to be strongly context-dependent (Grossiord et al., 

2014; Forrester et al., 2016; Jactel et al., 2017), and restricted to dry environments. Moreover, with the rapid shift 

in climatic conditions, it would be a mistake to assume that the same patterns of diversity-productivity and 

diversity-resilience relationships used to support the stress-gradient hypothesis (Bertness and Callaway, 1994) will 90 

apply in the next decades to newly drought-prone sites, where water resource limitation has not had the chance to 

shape the co-evolution of the local species over the past millennia. In fact, the same structural and specific 

complementarities that are currently responsible for increasing the productivity of existing mixed temperate forests 

through a better usage of the light resource could become a source of vulnerability, as competition for water 

intensifies proportionally to the density and foliage areas of the stands (Jucker et al., 2014; Haberstroh and Werner, 95 

2022; Decarsin et al., 2024; Moreno et al., 2024). 

 

For these reasons, and because experimenting composition effects in mature forests is especially difficult, the 

evaluation of diversity effects in forest ecosystems has also increasingly relied on forest models, particularly those 

based on processes (Bohn and Huth, 2017; Maréchaux and Chave, 2017; Jonard et al., 2020; Morin et al., 2021). 100 

Indeed, the prospective power of such models make them key tools in testing various hypotheses on the diversity-

functioning link (Maréchaux et al., 2021; De Cáceres et al., 2023a), but also in evaluating forest management 

practices that incorporate species mixing (Jourdan et al., 2021) and more generally in simulating forest-response 

to the long-term impacts of climate change (Reyer, 2015). 

 105 

To improve our ability to forecast the impact of climate change on forests and to better test adaptation solutions 

related to composition and management, we have thus identified two main shortcomings in forest models: the 

representation of the hydraulic functioning of trees, and of the interspecific interactions — especially competitive 

ones.  

 110 

In fact, there is a lack of knowledge regarding the effects of species mixing on forest resistance and resilience to 

drought, although trait-data describing the hydraulic functioning of tree species has been steadily accumulating in 

the last years. A great variety of water-stress adaptation and drought response strategies among species have been 

identified (Martin-StPaul, Delzon and Cochard, 2017; Choat et al., 2018): these include traits linked to the 

allocation between transpiring and conducting surfaces, stomatal control and conductance (Johnson et al., 2012), 115 

water storage, root-to-shoot ratio, specific leaf area, safety margins (Martin-StPaul, Delzon and Cochard, 2017), 

and rooting depths (del Castillo et al., 2016). These traits and their variability ultimately account for many of the 

plant-to-plant interactions responsible for water-competition reduction and facilitation (De Cáceres et al., 2021; 

Moreno-de-Las-Heras et al., 2023; Moreno et al., 2024; Mas et al., 2024). However, understanding their net impact 

in existing forests is complicated by environmental and structural variability among stands, and more generally by 120 

the fact that the most common available indicators — growth and mortality — integrate over time many processes 

that are difficult to unravel. Therefore, although the dynamic and integrative effect of species-mixing on medium-

term drought-resilience most directly concerns forest management strategies elaborated today, it is difficult to 
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formulate a priori recommendations. Decoupling the effects of hydraulic trait diversity from forest structure 

(foliage area, tree density) involves significant methodological difficulties (Forrester and Pretzsch, 2015), and is 125 

further complicated by the feedbacks between traits and stand structure (Guillemot and Martin-StPaul, 2024), as 

trees have been shown to adapt hydraulic to the forest structure (Limousin et al., 2012, 2022; Martin-StPaul et al., 

2013; Moreno et al., 2024).  

 

Furthermore, even disregarding species diversity, the relationship between forest structure, density and 130 

productivity is itself poorly understood: there is no consensus on the link between tree-size heterogeneity and 

productivity (Pretzsch and Biber, 2010; Bourdier et al., 2016; Dănescu, Albrecht and Bauhus, 2016), and while 

stand density has been statically correlated with increased growth (Reineke, 1933; Forrester, 2014), it is the overall 

dynamic interactions between these factors that must be understood (Morin et al., 2025). The prohibitive cost of 

testing all the factors affecting forest functioning (species diversity, stand structure and density, response to climate 135 

and soil conditions, effect of management…) in experimental or observational studies further justifies the use of 

forest ecosystem models (Pretzsch, Rötzer and Forrester, 2017), which are able to replicate in silico the complex 

plant-to-plant interactions that regulate competition for above- and belowground resources, evaluate potential 

facilitation and competition reduction processes, and integrate them over time in stand structure dynamics that 

account for trade-offs between drought-resistance and productivity. 140 

 

Recent gap models (Maréchaux and Chave, 2017; Morin et al., 2021) by explicitly modelling crown sizes and 

species shade tolerances, have focused on capturing the processes through which canopy packing and spatial niche 

partitioning can emerge. However, space is not only the dimension through which plant species partition resources 

– time is also an important vector of asymmetry through which different species can coexist in by exploiting 145 

different niches (Gotelli and Graves, 1996). Relative shifts of even a few days in leaf phenology – either through 

earlier budding or later senescence – have been shown to have major impacts on plant growth, by allowing 

otherwise shaded understory plants to receive full sunlight (Jolly, Nemani and Running, 2004). As warming 

climate conditions advances the phenology of most species, increasing productivity (Park et al., 2016) at the 

expense of additional vulnerability to spring frosts (Lopez et al., 2008), accurately integrating phenological 150 

responses of individual species is an important next step in improving the ability of gap models to represent 

competition for light.  

 

In addition, phenological processes (including seed production, leaf dormancy and resistance to frost) have been 

shown to be major factors in determining species distribution (Chuine, 2010). Indeed, while many studies highlight 155 

the role of species diversity in forest functioning, it is important not to lose sight of the fact that the presence of a 

species in a given forest is itself the result of a complex historical process conditioned both by site conditions and 

species coexistence mechanisms. By directly integrating trait-based phenology, gap models can therefore more 

accurately capture this dynamic by making species diversity an emerging factor of the modelling framework.  

 160 

Here we present a new process-based model called PHOREAU which combines the strengths of three previously 

published process-based models: ForCEEPS, PHENOFIT, and SurEau. The model was developed in the frame of 

the Capsis modeling plaform (Dufour-Kowalski et al., 2012), a modular software platform designed to simulate 
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the growth and management of forest stands.The model extends the scope of classic gap models by including a 

detailed representation of plant water use and competition for the water resource as well as a detailed representation 165 

of plant phenology and its impact on reproduction and frost leaf damage. The PHOREAU model thus presents a 

coupling between recent advances in the process-based modelling of plant water relations under conditions of 

extreme drought (Cochard et al., 2021a; Ruffault et al., 2022) with state-of-the art phenology (Chuine and 

Beaubien, 2001) and light competition (Morin et al., 2021) models, in an individual-based gap-model able to 

consider most types of forest structures (Morin et al., 2025)  and forest management (Jourdan et al., 2021). The 170 

validity of this approach is underpinned by its reliance on species-specific hydraulic, allometric and phenological 

traits, grounded in decades of experimental research (Leinonen, 1996; Kattge et al., 2020; Cochard et al., 2021a). 

 

The PHOREAU model has been designed  to shed light on some of the many pending issues regarding the effects 

of species diversity on forest functioning, such as the impact of extreme droughts (Piedallu et al., 2023) or the role 175 

of complementarity in leaf phenology on growth in mixed stands (Morin, 2011). More generally, the model offers 

the opportunity to tackle issues ranging from the physiology of individuals to the biogeography of species. 

Therefore, our multi-stage validation protocol, presented here, involves daily hydraulic processes, yearly 

productivity, pluri-annual mortality, and long-term species composition. 

  180 
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2 Presentation of the model 
 
The PHOREAU model builds on three process-based models, which have been presented in previous publications. 

For the sake of clarity, we have chosen to summarize only the main processes of each model, and to focus on the 185 

integration methodology and the new processes allowed by the coupling. Refer to Fig. 1 for a schematic 

representation of the PHOREAU model, and to Fig. 3 for a breakdown of the coupling between the ForCEEPS, 

PHENOFIT and SurEau models which constitute PHOREAU. 

 

 190 
 
 
 
 
 195 

2.1 ForCEEPS: a forest community gap-model  
 

2.1.1 Description of the ForCEEPS model 
 
In PHOREAU, forest dynamic processes (growth, mortality and recruitment) are all managed by the ForCEEPS 200 

model (Morin et al., 2021). ForCEEPS (Forest Community Ecology and Ecosystem Processes) is a gap model that 

relies on a few ecological assumptions to simulate the dynamics of tree establishment, growth and mortality in 

independent small patches of land, that are aggregated to derive properties at the forest scale. While the model is 

not spatially explicit at the patch level, it is individual-based: two trees of the same species and the same age can 

have different growth rates under the same climate, depending on the specific patch-level biotic constraints of 205 

light-competition. Derived from the FORCLIM model (Bugmann, 1996 ; Didion et al., 2009) the ForCEEPS model 

Figure 1 | Schematic representation of the PHOREAU model. The principle of the three main demographic 
processes (growth, mortality, regeneration) and competition for light are inherited from the ForCEEPS forest 
dynamics model. Tree hydraulics and competition for water and tree foliar phenology come from the coupling 
with the SurEau and PHENOFIT models, respectively. 
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was developed with the aim of simulating forest dynamics under a wide range of environmental conditions while 

limiting the need for prior calibration, and was designed to be equally able to simulate planted, managed, or natural 

forests (Morin et al., 2020, 2025). 

 210 

Tree growth is computed at a yearly time-step in two phases. First maximum diameter increment is calculated 

using an empirical equation shown in Eq. 1, as a function of trunk diameter at breast height at the start of the year, 

and a maximum species growth rate 𝑔!. 𝑏! and 𝑐! are species specific allometric parameters (respectively derived 

from 𝐻"#$ and 𝑠), and 𝐻"#$ the maximum height reachable by that species. Height is directly linked to diameter 

following another species-specific allometric parameter. 215 

 

∆𝐷&'( =	𝑔) 	× 	
*×,-. !

!"#$,&
/

0.2"#$,&.3&	×	)(+&.-)×(+&.-/0)
																																																																		Eq. 1         

 
Then, realized growth is determined from optimal growth after reduction by a series of growth-reduction factors 

(bounded between 0 and 1) following a modified geometric mean, as shown in Eq. 30. 220 

 

Drought, growing degree days, and soil reduction factors range from 0 to 1 are determined by site soil and climatic 

conditions, and modulated by species-specific parameters. The other factors represent biotic constraints related to 

light availability. 𝐺𝑅%&'() represents the immediate effect of competition for light, and depends on the cumulated 

leaf area above or at the same level as the considered tree. 𝐺𝑅*+,-. represents the long-term effects of crown size 225 

reduction on the capacity of trees to grow and assimilate carbon. In the ForCEEPS framework, trees crowns were 

represented as downwards-pointing triangles; the ratio of crown height to tree height 𝑐!	 is adjusted based on a 

factor that decreases from a species-specific maximum to minimum value as the tree experiences increasing shade 

(see Fig. 2). 

 230 

Similarly, tree establishment is regulated by winter temperature, growing degree days, light availability, and stand 

browsing intensity (Eq. 32). The number of potential seedlings for a given species depends on maximum site 

density and its shade tolerance parameter, shade intolerant having a greater regeneration potential (Eq. 31). The 

survival of each potential seedling is controlled by a stochastic process itself regulated by the reduction factors 

listed above. If selected, the sapling is initialized with a DBH of 1.27 cm. Tree mortality is the combination of a 235 

stochastic background process combining stand density and tree longevity, and a growth-related mortality that 

represents stress-caused tree death linked to biotic and abiotic constraints.  

 

A full description of the ForCEEPS model developed on the Capsis modeling platform (Dufour-Kowalski et al., 

2012) that was used as a base for this study can be found in Morin et al., (2021). In the following section, we 240 

present new developments that have been included in the ForCEEPS model, before the coupling with SurEau and 

PHENOFIT. 
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2.1.2 Improvements to the ForCEEPS model 245 
 
In anticipation of the coupling with SurEau and PHENOFIT, a number of modifications were made to the 

ForCEEPS model, focusing on microclimate, light-dependent height plasticity, and improvements to the light-

competition module. This proved necessary when integrating transpiration-driven water fluxes, as stand leaf area 

is one the main driver of embolism in the SurEau model (Cochard et al., 2021b), and preliminary results indicated 250 

a poor capability of the ForCEEPS to reproduce observed leaf area indices from stand inventory, in both relative 

and absolute terms. These refinements are summarized below and in Fig. 2, with more in-depth descriptions in 

supplementary information (appendices A, B, C, D, E and F). 

 

Light-dependent height plasticity: ForCEEPS infers tree height from trunk diameter using fixed allometric 255 

relationships, limiting its ability to capture site effects and competition-driven height-diameter variations. In 

reality, understory trees allocate more growth to height, while trees in low-density stands prioritize diameter 

growth (Oliver and Larson, 1996), especially in shade-intolerant species (Delagrange et al., 2004). Recognizing 

this, we have incorporated dynamic height growth in PHOREAU, by adjusting height increments based on 

competition-driven parameters and species shade tolerance parameter.  260 

 

Crown-length reversion: The PHOREAU model improves the representation of crown length dynamics by 

allowing crown ratio reversion when light availability increases, unlike the ForCEEPS model, which only 

permitted decline. This adjustment accounts for the impact of tree death or removal on neighboring trees, enabling 

canopy recovery, with a yearly crown ratio increase capped at 5% of the difference between the previous ratio, 265 

and the potential crown ratio based on light conditions. 

 

Species-dependent crown shapes: The PHOREAU model improves crown-shape representation by allowing for a 

greater range of crown shapes than the default ForCEEPS inverse-cone, including ellipsoidal and conical shapes. 

This in turn allows for a better representation of inter-specific competition, with complementarities arising from 270 

differences in crown structure.  

 

Density-dependent light availability: PHOREAU maintains ForCEEPS' balance between predictive power and 

computational efficiency by simplifying light dispersion calculations, using a vertical stratification approach 

without explicit tree positioning. However, this method reduces light competition to a single leaf area index (LAI) 275 

value, overlooking horizontal canopy structure and gaps that influence tree growth. To address this, PHOREAU 

integrates a clumping factor (Ω) into its light extinction coefficient, capturing variations in foliage aggregation and 

improving realism (Nilson, 1971; Black et al., 1991; Bréda, Soudan and Bergonzini). This approach reflects 

observed trends, such as the inverse relationship between LAI and light extinction (Dufrêne and Bréda, 1995), and 

aligns with methods used in remote sensing (Demarez et al., 2008; Chen et al., 2012; Zhu et al., 2018). 280 

 

Incorporation of Specific Leaf Area (SLA): ForCEEPS crown size allometric relationships, originally calibrated 

for a few temperate European species (Burger, 1951; Bugmann, 1996), led to inaccurate predictions when applied 

to a broader range of species, particularly Mediterranean and understory trees. PHOREAU addresses this by 
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recalculating tree foliage area using species-specific leaf area (SLA) values, improving the model’s ability to 285 

represent interspecific differences in drought resistance. 

 

Microclimate derived from stand-structure: Forest canopies buffer climatic conditions in the understory, resulting 

in cooler, more stable daytime temperatures and warmer nighttime temperatures compared to the canopy. This 

microclimate effect is especially pronounced in dense, structurally complex canopies (De Frenne et al., 2021), 290 

helping young understory trees resist drought despite shallow root systems (Forrester and Bauhus, 2016). Because 

the PHOREAU model integrates fine-scale hydraulic and phenological mechanisms within a forest-structure gap 

model, it is able to capture these effects of microclimate on plant functioning. In particular, we integrate 

microclimatic temperatures and vapor-pressure deficits derived from macroclimate data using a statistical model 

based on a slope and equilibrium approach presented in Gril et al., (2023) and Gril, Laslier, et al., (2023), 295 

incorporating patch characteristics like leaf area index (LAI), maximum tree height, and vertical complexity index 

(VCI). Hourly microclimate temperatures are then used to calculate vapor pressure deficits for transpiration 

computations, as well as degree-day accumulation for tree growth and regeneration. 

 

 300 
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Figure 2 | Presentation of the modifications in the light-competition module between ForCEEPS (Morin et 
al., 2021) and PHOREAU, with a description of the main changes 
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2.2 SurEau: a plant hydraulics model 305 
 
The SurEau model (Cochard et al., 2021; Ruffault et al., 2022) is a model of the SPA family (soil-plant-

atmosphere, Mencuccini et al., 2019), dedicated to model plant response during extreme drought, which describes 

water flows in a soil, plant and atmosphere system. It was developed with the idea (1) simulating the water status 

of plants throughout a complete drying sequence going beyond stomatal closure, including plant desiccation and 310 

hydraulic failure (Choat et al., 2018); and (2) of being able to be initialized from accessible environmental data 

(climate, description of the structure of the forest stand by inventory or remote sensing) and hydraulic “traits” at 

fine taxonomic grains (species, provenance, etc.) which are increasingly available in global databases (e.g. Martin-

StPaul, Delzon and Cochard, 2017; Guillemot et al., 2022). The SurEau model uses daily climate data as inputs, 

which are then disaggregated into hourly values; among its outputs are the time to full stomatal closure, and the 315 

hourly level of cavitation of each organ. There are two published versions of SurEau and their detailed presentation 

can be found in Cochard et al., (2021) and Ruffault et al., (2022). These two versions differ in the complexity of 

the hydraulic architecture of the plant and the numerical scheme used to solve the equations of transport (Ruffault 

et al., 2022). 

 320 

We describe below in a synthetic manner the main principles of the model, the equations used for the coupling, 

and its implementation in Phoreau. For the purpose of the coupling, we have recently implemented a highly 

modular version of SurEau into the Capsis platform using Java object-oriented programming, which includes the 

main aspects of both previous versions of SurEau. The specific functioning of each compartment is elegantly 

implemented using object-oriented principles, allowing for modularity and clarity in the model design. 325 

 

SurEau includes principles of forest water balance such as transpiration, rainfall interception, soil evaporation, 

rain infiltration into different soil layers, and water drainage into deep reservoirs. The specificity of SurEau is to 

explicitly represent water transport within the tree through a system of resistance and capacitance (Fig. 3). This 

hydraulic architecture makes it possible to calculate the water status (water potential and water content) at different 330 

levels of the tree and the soil. The tree's organs (e.g., roots, trunk, branches, leaves) are represented by a water 

compartment separated into a symplasm and an apoplasm. The symplasm corresponds to the water reservoir made 

up of living tissues (parenchyma, phloem, etc.); it is elastic and can exchange water with the vascular system under 

the effect of tissue volume variations. 

 335 

The soil-plant-atmosphere system is modeled through different compartments (“hydraulic cells”), considered as 

“computational entities” and implemented as classes in Java, which are interconnected and exchange water fluxes 

through specific functions which model ecophysiological processes. This Capsis version builds on the 

implementation of generic computational entities that we call SPH (Soil-Plant-Hydraulic) compartments, which 

can be attributed a specific type (soil, symplasm, apoplasm). Each type is defined by specific functions to compute 340 

water potential and water quantities. These SPH compartments can be connected together to build a tree of any 

possible complexity. The fluxes between cells are determined with Fick’s law by using the water potential 

gradients between cells and their hydraulic conductances. The water content of each cell is therefore described as 

the result of inflows and outflows; and the water potential of each cell is calculated with the appropriate 

formulation according to the nature of these cells (soil, symplasm, apoplasm). For the soil a water retention curve 345 
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is used (Van Genuchten, 1980). For the symplasm, the law of pressure-volume curves (Tyree and Hammel, 1972), 

which expresses the relationship between water content and water potential, is used to describe loading and 

unloading dynamics. These laws can be parameterized using abundant pressure-volume curve data (Bartlett, 

Scoffoni and Sack, 2012). The effect of cavitation is to alter the hydraulic conductance of the apoplasm, and can 

lead to hydraulic failure. However, cavitation also releases apoplastic water into the transpiration stream, which 350 

can temporarily attenuate the drop in water potential (i.e., water stress). Both phenomenons are irreversible (but 

see Sect. 3.4.2). The percentage loss of conductance (PLC) through vessel embolism is calculated using the water 

potential of the organ’s apoplasm (𝜓01,) and an empirical sigmoid function described by species-specific inflexion 

and slope parameters (𝑃23, s𝑙𝑜𝑝𝑒4#5) as shown in Eq. 2: 

 355 

𝑃𝐿𝐶 = !""

!#(%
6789:;<=

>? ×ABC98DE?FG
																																																																																																															Eq.2 

 
PLC is a key indicator of the risk of mortality by hydraulic failure, and has been elected a key variable for the 

coupling with ForCEEPS (see Sect. 3.4.2).  

 360 

The main fluxes from the plant to the atmosphere are the stomatal and the cuticular transpirations. Cuticular and 

stomatal transpirations are computed using gas-phase conductance, and the vapor pressure deficit between the 

organ and the atmosphere. The leaf stomatal and cuticular conductance are connected in parallel to produce the 

leaf conductance, itself connected in series to other boundary and crown conductances to produce the overall 

canopy conductance. Leaf cuticular conductance varies with leaf temperature and its photosynthetic activity. 365 

Meanwhile, stomatal conductance is calculated as the product of a maximum stomatal conductance without water 

stress 𝑔!),",4%&"_"#$ (which ranges between species specific parameters 𝑔!),"_"#$ and 𝑔!),"_.&'()  depending on 

depends on light, temperature, and CO2 concentration), with a regulation factor 𝛾 based on plant water status, as 

shown in Eq. 3.  

 370 

𝑔&'() = 𝑔&'(),+,-)_)/0 × 𝛾																																																																																																																Eq. 3   

 
In particular 𝛾 represents the degree of stomatal closure between 0 and 1, computed using leaf symplasm water 

potential 𝜓JKL" and a sigmoid function described by inflexion and shape parameters 𝜓'!23 and s𝑙𝑜𝑝𝑒'! as shown 

in Eq. 4 (these parameters are themselves derived from species-specific pressure-volume curve parameters  𝑃'!MN 375 

and 𝑃'!OO : refer to Ruffault et al., (2022), for more details).  

 

𝛾 = 1 − !

!#%
6789:P6

>? ×ABQRSTDBP6?F	G
																																																																																																					Eq.4 

 

Numerical resolution of the plant water balance is based either on the explicit or the faster semi-implicit method 380 

presented in Ruffault et al., 2022. This first version of PHOREAU v1.0 uses the same simplified tree hydraulic 

architecture as in Ruffault et al., (2022) and uses the faster and generic semi-implicit solver. Before performing 
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the coupling, we verified this new implementation could provide exactly the same results as the previous version 

under the same initial conditions. 

 385 
2.3 PHENOFIT: a phenology-based distribution model 

 
The PHENOFIT model (Chuine & Beaubien 2001) is a process-based species distribution model for temperate 

trees which calculates the probability of presence over several years of a given species for a particular set of 

environmental conditions. This probability is derived from the estimated fitness of an average adult individual of 390 

that species, which is itself the product of the probability to survive until the next reproductive season, and the 

probability to produce viable seeds by the end of the annual cycle. The model assumes that survival and 

reproduction depend on the synchronization of tree development to seasonal climatic variations, with the plasticity 

of key phenological events such as leaf unfolding, flowering, fruit maturation, and leaf senescence. The model 

uses soil data and daily meteorological data (minimum and maximum temperature, rainfall, relative humidity, 395 

global radiation, and wind speed) as inputs. It is composed of several sub-models: phenological models for leafing, 

flowering, fruiting and leaf senescence (for reviews refer to Chuine and Régnière, 2017, and Chuine et al., 2024); 

a frost injury model (Leinonen, 1996); a survival model; and a reproductive success model calculated as the 

proportion of uninjured fruits that reach maturation considering photosynthetic ability and the proportion of leaves 

not killed by frost (Chuine and Beaubien, 2001). A visual representation of the model can be found in Fig. 3. 400 

 

In PHENOFIT, both the leafing and the flowering dates (𝑡U) are calculated with a two-phase phenology model. In 

the first phase of endodormancy (Eq. 5), the bud must be exposed to a certain amount (𝐶4) of chilling units (𝑅4,)) 

from the onset of dormancy (𝑡3) in order to break this endodormancy at date 𝑡M. In the second phase of 

ecodormancy, or quiescence (Eq. 7), the bud cells elongate in response to forcing temperatures. They must 405 

accumulate forcing units (𝑅U,)) until a threshold value (𝐹4) is reached, that corresponds to the leafing or flowering 

date. The type of response functions to temperature are identical for leafing and flowering, only the parameters of 

these functions differ between the two. Calculations are done at daily time-step, using mean daily temperatures 

(𝑇)) and species-specific parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) as shown in Eq. 5 and Eq. 7. Leaf senescence dates 𝑡4 are 

calculated following the model of Delpierre et al., (2009).  410 

 

Flowering and leafing dates are then used, alongside the daily minimum temperature (𝑇&) between bud onset and 

leaf senescence or fruit maturation, to determine proportions of leaves and flower-fruits (𝐼%,𝐼U) uninjured by frost. 

The probability that fruits reach maturation (𝐼+) is calculated on the basis of the proportion of uninjured leaves 

which produce the assimilates accumulated in the fruits, the date of flowering from which thermal energy can 415 

begin to be accumulated, and a species-specific parameter 𝐸4	representing the average amount of energy needed 

to reach maturation (Eq. 11). Finally, a yearly probability of producing viable seeds, or reproductive success (𝑅), 

is calculated as the product of the probability that fruits will ripen and the proportion of uninjured fruits reaching 

maturation, as shown in Eq. 12.  

 420 
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𝐶+ = ∑ 𝑅+,'
𝒕𝟏
'F 																																																																																																																																							   Eq. 5

          425 

𝑅+,' =
!

!#%;(XYD:)>[\(XYD:)
																																																																																																																							Eq. 6

        

𝐹+ = ∑ 𝑅2,'
𝒕𝒇
'^

																																																																																																																	                       Eq. 7 

𝑅2,' =
!

!#%<(XYD_)
																																																																																																													                     Eq. 8

            430 

𝐼, = 𝑓0𝑡,%/2-34, 𝑇-4																																																																																																									                    Eq. 9 

 
𝐼2 = 𝑓(𝑡2,(5%6-34, 𝑇-)																																																																																																																										Eq. 10  

           
 435 
𝐼6 = 𝑓(𝑡2,(5%6-34, 𝐼, , 𝐸+)																																																																																																                  Eq. 11 

 
𝑅 = 	 𝐼2𝐼6 																																																																																																																																																Eq. 12 

 
For each organ and each species, parameters are inferred statistically using time series of phenological 440 

observations from native populations (dates of leaf unfolding, senescence, flowering, and fruit maturation) for 

different sites and different years, or from experimental results found in the literature (resistance of plant organs 

to frost). 

 

As the model simulates one average individual, it does not take into account demography or biotic interactions 445 

with other species. It also does not represent the impacts of plant growth on survival and resource allocation, but 

takes into account the effect of a reduction of leaf area on survival. While it can (by calibrating parameters from 

phenological data of different provenances) represent the way phenological plasticity can vary from one site to 

another due to genetic differentiation and eventual local adaptation, we have chosen here to use only one 

calibration set per species: in other words, we account for the plastic response of a species to varying climate 450 

conditions, but not for the genetic differentiation of this response. As a result, species performance may be under-

estimated at the limits of its distribution due to non-representative parameter estimates. 

 

The version of the model used in the study, as well as each species’ response parameters, are distributed on the 

Capsis platform (Dufour-Kowalski et al., 2012). A description of the model can be found in Chuine and Beaubien, 455 

(2001). 
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 460 
2.4 PHOREAU: the coupled model 

 
2.4.1 Model-coupling framework 
 
At the heart of the PHOREAU model is the integration of the ForCEEPS, SurEau and PHENOFIT models. This 465 

integration was made possible by the presence of all three models on the Capsis Java platform (Dufour-Kowalski 

et al., 2012). Two major considerations guided the coupling of the models: avoiding overlapping processes, and 

minimizing the increase in computing time that might arise when integrating models operating at different time-

scales. 

In its simplest state, the connection between the three models can be described as follows. Independent PHENOFIT 470 

simulations are first run for each species and climate year, whose outputs (dates of leaf unfolding and senescence, 

probability of reproduction) are then read and fed into the main PHOREAU simulation.  

 

At the beginning of each PHOREAU simulation year, all the trees currently present in the plot are used to initialize 

a separate SurEau simulation. This simulation lasts exactly one year, using the same daily climate as the main 475 

simulation, albeit with a further hourly disaggregation required by the Sureau numerical scheme. In addition to 

species hydraulic traits parameters (see Ruffault et al., 2022), morphological (i.e. size dependent) variables 

(including tree volume computed from height and diameter, as well as leaf area, PLC, and light availability), are 

retrieved directly from the main ForCEEPS simulation; leafing and senescence dates are obtained from 

PHENOFIT; and the initial state of the soil is retrieved from its state at the end of the previous SurEau simulation 480 

for year n-1. 

 

Once a SurEau simulation has been initialized, it proceeds to run for one year. Throughout the simulation data is 

collected and sent back to the main ForCEEPS simulation to determine the effects of drought stress on growth, 

mortality, and defoliation, as detailed in the following sections. 485 

 

However, the sub-hourly time-scales of the SurEau processes, which represent a roughly tenfold increase in 

computation time, warranted the implementation of two major optional simplifications to this framework. They 

are summarized below, with more in-depth descriptions in supplementary information (Appendices G and H) 

 490 

Treewise aggregation for SurEau module. SurEau simulation runtimes are primarily influenced by the number of 

distinct SPH-compartments, and particularly the number of trees. To optimize runtime, PHOREAU reduces the 

number of trees simulated by SurEau each year, while maintaining the overall stem volumes and foliage areas at 

the stand, species and cohort level. This is achieved through an aggregation method that groups trees into a 

predefined number of classes per species (set to 3 in our model evaluation), preserving structural integrity while 495 

simplifying competition for water by reducing the number of trees. Trees are distributed into a configurable 

number of classes based on trunk diameter, separating for example mature and juvenile trees. As trees grow, they 

may shift between classes, and some classes may remain empty in certain years. Each class is represented by a 

single aggregate tree, whose characteristics are determined by summing (volume, foliage area, biomass) or 

averaging (height, root depth, light availability) the corresponding attributes of the individual trees. At the end of 500 
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each year, aggregated class results are distributed among the trees that make them up, informing yearly growth 

and mortality equations. This method significantly reduces computational complexity, while maintaining key 

ecological dynamics in SurEau. 

 

 505 
 
 
 
 

 510 

2.4.2 Drought-stress integration 
 
PHOREAU accounts for drought impacts on tree growth and mortality thanks to the integration of the SurEau 

plant hydraulics model. Drought-induced mortality can occur either directly — in response to extreme drought 

through high level of xylem embolism leading to hydraulic failure — or as a long-term consequence of reduced 515 

growth related to consecutive low intensity drought and defoliation. As a result, the model effectively represents 

the interplay between the short term extreme drought effect of hydraulic failure, and the longer term drought effect 

carbon starvation (McDowell et al., 2008).  

 

Drought feedback on growth in PHOREAU is assessed by using the factor of stomatal aperture 𝛾 computed by 520 

SurEau at the tree level. This replaces the ForCEEPS formulation, where a growth reduction factor 𝐺𝑅`+,a'() was 

computed by comparing a drought index (𝐷𝑟𝐼) based on a simple monthly water budget with an empirical species-

specific drought tolerance index (Bugmann and Solomon, 2000). The factor of stomatal aperture 𝛾 is computed 

(Eq. 13) from the leaf water potential on the basis of a sigmoid curve described by two species-specific traits (𝑃'!MN 

the water potential causing 12% stomatal closure, and 𝑃'!OO the water potential causing 88% stomatal closure, 525 

Cochard et al., 2021b, Ruffault et al., 2022). Daily stomatal apertures are then integrated annually, over the 

vegetation period, to compute the D𝑟𝐼 (Eq. 14). Refer to Appendix I for more details. 

GR!"#$%&'%()*

2 – ForCEEPS 
simulation for N years

1 – PHENOFIT simulations for
each year and species

The PHOREAU 
model

2b – Yearly SurEau simulations

Annual calls

Figure 3 | Detailed representation of the processes included in the SurEau, ForCEEPS and PHENOFIT 
models. Red circles indicate outputs used for the coupling, and red lines their destination in the 
ForCEEPS simulation. Original figures are taken from Morin et al. (2021), Chuine and Beaubien (2001), 
and Ruffault et al. (2022), where parameters details can also be found. 
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𝛾 = 1 − *1 + 𝑒
12,&3"45.6×(17&80/17&99)

5.06×(17&80417&99) -
.-

                                                    Eq. 13530 

  

𝐷𝑟𝐼 = 1 − -
L
∗ ∑ 2𝛾M3																																																																								L

MN-                    Eq. 14
   

 

 535 
 
Drought feedback on mortality and defoliation. Two additional drought stress mechanisms derived from the level 

of embolism were implemented in PHOREAU. First, drought-induced defoliation was computed on a daily basis 

for each tree by using the percentage of the leaf xylem embolism (Cakpo et al., 2024). The defoliation rate was set 

proportional to the embolism rate, with a minimal threshold set at 10% (Eq. 20 and 21). The resulting defoliation 540 

percentage is applied to the maximum leaf area of the tree for the given day (itself the result of the species crown 

allometry, reduction of crown length due to competition for light, and the phenological stage of the leaf derived 

from PHENOFIT) to obtain the effective daily leaf areas used throughout the model, from plant water usage to 

light competition and rain interception (refer to Sect. 3.4.3 for details and equations). Furthermore, an average 

yearly defoliation percentage is computed for integration in the 𝐺𝑅4+,-. growth-reductor from crown length which 545 

represents leaf-loss impact on carbon assimilation (see Eq. 27 to 29). Finally, the longer-term adaptation between 

water stress and reduced leaf area is partially captured by the fact cavitation is carried over from year to year, with 

a specific repair mechanism described below. Refer to Appendix J for more details. 

 

Second the rate of embolism (assessed through the percent loss of cavitation, PLC) is used to estimate extreme 550 

drought induced mortality. The PLC computed by SurEau is retrieved for each tree at the end of the year. Because 

no cavitation-repair mechanism is implemented at this intra-yearly timescale, the end-of-year value is also 

necessarily the maximal reached PLC. Then, the resulting 𝑃𝐿𝐶% is converted into a probability of death, which is 

applied at the end of the year like the other death probabilities in the model (Eq. 33). When the tree aggregation 

option (see Appendix G) is used, each individual tree of a class receives the drought-induced death probability of 555 

its corresponding aggregate tree, and death events are drawn independently among them. The actual conversion 

of the level of cavitation into a death-probability follows a logistic distribution fitted using data from Hammond 

et al., 2019. The probability distribution is parametrized using a constant steepness parameter, and a species-

specific 𝐿𝐷23 parameter which corresponds of a point of no return, the lethal dose of cavitation at which exactly 

50% of individuals of the species are expected to die (see Eq. 15). As a first approach this 𝐿𝐷23 was fixed 560 

parameterized at respectively 50% and 80% for gymnosperm and angiosperm species (Choat et al., 2012); Delzon 

and Cochard, 2014), reflecting the capacity of the latter species to operate at water potentials below the 𝑃23line. 

This is a result of differences in strategies between embolism-tolerant and embolism-avoidant species, as 

gymnosperms tend to operate at wider safety margins with vessels more resistant to embolism (Choat et al., 2012). 

Finally, an additional threshold parameter was added to avoid random mortality events for low PLC values, 565 

n : days in year ; j : day of year 
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considering even well-watered trees show some degree of embolism throughout the year (Cruiziat, Cochard and 

Amiglio, 2002). Refer to Appendix K for more details. 

 

 

𝑃+/7-'/'-(38(6'/,-'9 = 8 (1 + 𝑒
:;∗=>?@%:?A?F,6B):!										𝑃𝐿𝐶% > 𝑃𝐿𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

	0																																																						𝑃𝐿𝐶% ≤ 𝑃𝐿𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	
													Eq. 15 570 

 

 

 

 
Year-to-year cavitation memory and repair. The impact of cavitation on tree functioning can continue long after 575 

the end of the initial drought event, and is one of the main causes for the increased vulnerability to future drought 

events of previously weakened trees (Anderegg et al., 2013; Feng et al., 2021). On the other hand, internal repair 

mechanisms linked to plant growth (formation of new vessels) can allow the recovery of initial conductance over 

time (Brodribb et al., 2010).  As such, the recovery from embolism in PHOREAU is driven by basal area growth 

— or, more precisely, by the relative increase of sapwood area, which contains the living conductive vessels. 580 

While all new growth is naturally sapwood, as a tree becomes larger the relative proportion of sapwood to 

heartwood tends to decreases. It follows that to evaluate the rate of replacement of the conductive vessels, the 

model must first know the pre-existing area of sapwood. PHOREAU uses the foliage area to determine this 

quantity, through the application of a species-specific, constant, leaf-to-sapwood ratio, also known as the inverse 

of the Huber value (Cruiziat, Cochard and Amiglio, 2002). The leaf-to-sapwood ratio is applied to the potential 585 

one-sided leaf area of the tree, derived solely from its DBH and allometry parameters, and not its actual leaf area 

after defoliation through competition, frost or drought. This approach, presented in Eq. 16, assumes the Huber 

value to be constant: we know that this is in fact an important simplification, and that many species adapt their 

leaf mass per area to site conditions (Lopez et al., 2008). 

 590 
 

𝑃𝐿𝐶)LP- = 𝑀𝑎𝑥(0	, 𝑃𝐿𝐶)L − 100 ∗
∆RS)STUVWS:/8
XU':/8∗	XU:[U&	

)																																															Eq. 16 

 

 

 595 

 

2.4.3 Leveraging leaf phenology and hydraulics to temporalize competition for light 
 
In ForCEEPS, the way the light availability of each canopy layer is determined by the above total leaf area of the 

above layers, combined with differentiated shade tolerances between species, allows emergent complementarities 600 

in a multi-specific context between shade tolerant and intolerant species, resulting on average in greater total stand 

leaf area and productivity at the stand level (Morin et al., 2025). But alongside spatial complementarities, there 

s : species ; 𝑃𝐿𝐶%: end-of-year loss of conductance percentage ; 𝐿𝐷"#,%	: species cavitation 
sensibility parameter ;  𝜆 : steepness parameter (default 0.12) ; 𝑃𝐿𝐶_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : default 20%  

s : species; n : year ; 𝑃𝐿𝐶: end-of-year loss of conductance percentage 𝐿𝐴𝑝 : 
potential one-sided leaf area  ; 𝐿𝐴: 𝑆𝐴%: species leaf area to sapwood ratio 
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exist temporal complementarities in species usage of light related to different leaf phenology (Gotelli and Graves, 

1996). 

 605 

The PHOREAU model, by integrating leaf phenology simulated by the PHENOFIT model (see Sect. 3.3), accounts 

for these temporal effects. In particular, the PHENOFIT model calculates two dates based on temperature and 

photoperiod conditions: the unfolding date (𝑡U,!,.) when 50% of the buds show at least one unfolded leaf (BBCH 

15), and the senescence date (𝑡4,!,.) when 50% of the leaves have changed color or have fallen (BBCH 95). This 

gives us the range of days when each tree bears leaves. In practice, the maximum daily foliage area of a given tree 610 

(𝐿𝐴!,&
.,c) is derived from its maximum yearly foliage 𝐿𝐴𝑝!,&.  (itself the result of species-specific crown allometry 

and the light availability of the tree, Eq. 17 and 18) , by using the dates of leaf unfolding 𝑡U,!,.	and leaf senescence 

𝑡4,!,. calculated by PHENOFIT for a given species 𝑠 for a given year 𝑛, as described in Eq. 19. 

 

Using this information required an in-depth reworking of the light-competition module: instead of calculating each 615 

layer’s light availability at the yearly time-step, daily light availability is now calculated by summing the crown 

areas of all leaf-bearing trees in the above layers. The final tree light availability is calculated by summing, over 

all its layers, for all the days for which it is itself bearing leaves, each daily layer light availability. To correct for 

the fact that tree growth is dependent on heat as well as sunlight, this sum is weighed using daily mean 

temperatures. In addition to being temporalized, this formulation integrates all the refinements to canopy 620 

representation described in Sect. 3.1.2. 

 

Furthermore, while ForCEEPS implements a mechanism for competition-driven loss of foliage area, representing 

the reduction of the crown height of dominated trees as their lower branches die off, it does not incorporate 

mechanisms of leaf-loss driven by extreme meteorological or hydraulic conditions. Unlike competition-driven 625 

branch dieback, leaf-loss caused by extreme weather conditions is not usually accompanied by branch death, does 

not preferentially target the leaves located in the lower parts of the crown, and can be more quickly reverted with 

shoot regrowth. These differences justified the implementation in PHOREAU of a new mechanism for transitory 

leaf-loss, distinct from the reduction of crown size, with no memory from one year to the next. The variables used 

to drive this leaf-loss are derived from the yearly percentage of frost-damaged leaves (𝐼%) and daily leaf cavitation 630 

(𝑃𝐿𝐶%) values calculated respectively in the PHENOFIT and SurEau models (see Sect. 3.2 and 3.3). The 

PHENOFIT leaf loss index is calculated using the frost injury model of Leinonen (1996), based on the leaf-

phenology, temperature and photoperiod conditions. The SurEau drought-induced leaf-loss is presented in Sect. 

3.4.4. This new mechanism, shown in Eq. 20 and 21, allows the model to reflect strategies of drought acclimation, 

where defoliation can help some species tolerate drought events (Bréda et al., 2006; Limousin et al., 2022) at the 635 

cost of a lowered growth potential. It is this daily leaf area 𝐿𝐴!,&
.,c,dUUd4)&5d that is in fine used in all PHOREAU 

processes, from transpiration, GDD accumulation for growth, to light-competition. Refer to Eq. 28 and Eq. 20 for 

the respective formulations of frost-induced leaf loss (𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡!,.) and drought-induced leaf loss 

(𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡&,!,.). 

 640 
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𝐿𝐴𝑝),bL =	𝑐0) × 𝑐𝑟𝑜𝑤𝑛𝑠𝑖𝑧𝑒b,L ×	𝐷𝐵𝐻b,L
U0& 								                                                   Eq. 17 645 

 

𝑐D& = 0.35 ∗ 	𝑆𝐿𝐴& ∗ 2  (Deciduous)       

𝑐D& = 0.45 ∗ 	𝑆𝐿𝐴& ∗ 2  (Evergreen) 

 

𝑐𝑟𝑜𝑤𝑛𝑠𝑖𝑧𝑒b,L = 	𝑓(𝐿𝑖𝑔ℎ𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦	b)				                                                   Eq. 18 650 
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S

		𝑗 ≤ 𝑡2,&,3
𝑡2,&,3 < 𝑗 < (𝑡2,&,3 + 𝑈𝐼&)
(𝑡2,&,3 + 𝑈𝐼&) ≤ 𝑗 ≤ 	 𝑡+,&,3
𝑡+,&,3 < 𝑗 < (𝑡+,&,3 + 𝐶𝐼&)

𝑗 ≥ 	 (𝑡+,&,3 + 𝐶𝐼&)

																																																								Eq. 19 

𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡-,&,3,E = [
1 − !

=';:'eB
× 𝑃𝐿𝐶	-,&,3,E 																					𝑃𝐿𝐶% > 10%

	1																																																											𝑃𝐿𝐶% ≤ 10%	
                 Eq. 20 

𝐷𝑒𝑓𝑜𝑙𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒-,3,&,E = 𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡&,3 × 𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡-,&,3,E      Eq. 21 

 

𝐿𝐴𝑝),b
L,M,WccWd(beW =	𝐿𝐴),b

L,M × P1 − *Wc&TbS(b&LfWVdWL(SgW;,:,&,<
-hh

Q								                    Eq. 22 655 

 
       
 

 
This simplified formulation has the disadvantage of disregarding intra-specific differences in phenology arising 660 

from differences in size or competition-status (Gill, Amthor and Bormann, 1998; Augspurger and Bartlett, 2003; 

Vitasse, 2013; Gressler et al., 2015). Furthermore, it does not yet take full advantage of the PHOREAU hydraulic 

submodule to account for the effects of drought on leaf development, either through earlier leaf coloration (Xie et 

al., 2018) or shifted unfolding (Cleland et al., 2007). Further developments of the PHOREAU model should 

therefore strive to use information from the light competition and water stress modules to inform the calculation 665 

of phenology dates. 

 

The rain interception module. In addition, PHOREAU integrates a rain interception module that reduces incoming 

rainfall based on daily foliage area, accounting for allometry, competition, frost, phenology, and drought-

defoliation effects. Canopy storage volume, derived from daily foliage area, accumulates rainfall and releases 670 

s : species; i : tree ; n : year ; j : day of year ; 𝐿𝐴𝑝!,&. : maximum tree yearly leaf area ; 𝑡U,!,. : species leaf 
unfolding date ;  𝑡4,!,. : species leaf senescence date ; 𝑈𝐼! : species leaf unfolding interval ; 𝐶𝐼! : species leaf 
coloration interval  
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water through evaporation, with throughfall calculated using a simplified Beer-Lambert formula. Refer to 

Appendix L for more details and model equation. 

 

2.4.4 Rooting system representation in PHOREAU 
 675 
The explicit representation of root and their related processes is crucial for any model aiming to simulate the 

response of vegetation to climate change (Woodward and Osborne, 2000). Because of this, the framework for 

representing roots in PHOREAU had to be considerably expanded compared to the parent model where the rooting 

system was reduced to a simple fine root surface. In particular, we built upon the SurEau-Ecos framework by 

integrating coarse root depth alongside fine root surface, having the roots of different trees share the same soil to 680 

compete for water, and implementing plastic responses of root biomass and root depth to drought stress and 

aboveground growth.  

 

The modelling of the root compartment in PHOREAU is based on the same major hypothesis as that of the canopy 

and light competition module: an implicit homogenous horizontal distribution of trees, with an explicit vertical 685 

stratification. In the same way the aggregated vertical distribution of foliage area entirely determines the light 

availability of each tree, competition for soil water between trees in PHOREAU is the result of the vertical 

distribution of their root systems. The underlying hypothesis is that all trees compete for the same water reserves, 

provided their roots go deep enough; and the user must take care to select a simulation stand area that verifies this 

constraint, which will itself vary according to the size and rooting structure of the trees present in the stand. 690 

 

In PHOREAU the rooting system of a tree is split between fine roots and coarse roots: this distinction is essential 

as the root types have different functional roles and responses to external factors (Pregitzer, 2002). Schematically, 

fine roots extend horizontally to absorb water in the available soil, while coarse roots explore deeper layers and 

make them available to fine root exploration. Because in PHOREAU the soil is segmented in a number of layers, 695 

this has been translated in the following way: the fine root area of a tree in a determines the conductance between 

this tree and a given soil layer, while the rooting depth determines which layers the tree has access to, and how its 

fine root area is distributed within them.  

 

In practice this means that, for a given set of soil parameters, certain trees will be able to extract water from the 700 

full soil profile, while others will be restricted to only a fraction (see Fig. W2, extracted from the PHOREAU 

evaluation on the ICOS sites). This framework is intended to reflect the crucial role of rooting depth in resilience 

to drought stress (Canadell et al., 1996), as trees with deeper rooting systems are able to make use of relatively 

untouched water reserves in deeper soil layers. Furthermore, because this is implemented in a forest dynamics 

model where many trees share the same soil, PHOREAU will be able to use the differential rooting depths to 705 

explore the contrasting intra and inter-specific drought responses observed in nature (Johnson et al., 2018). 

 

Rooting depth is a notoriously difficult trait to measure, and involves costly, time-consuming, usually destructive 

techniques (Maeght, Rewald and Pierret, 2013). While some rooting depth data is available in the literature 

(Guerrero-Ramírez et al., 2021), its scarcity makes it difficult to disentangle environmental, allometric, and genetic 710 

factors; what is driven by aboveground  biomass, from what is driven by water availability and  groundwater table 
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depth (Fan et al., 2017; Freschet et al., 2021; Li et al., 2022). To circumvent this difficulty in obtaining accurate 

rooting depth traits, we take advantage of the fact PHOREAU does not explicitly represent the position of a tree 

in the plot and ignores lateral distribution, by using coarse root biomass — an extensively studied trait — as a 

proxy for rooting depth, thereby implicitly aggregating the lateral and vertical extension of the root system in an 715 

integrative rooting extent variable, which is driven by shoot size and site aridity (Tumber‐Dávila et al., 2022). 

 

Coarse root biomass and fine root biomass in PHOREAU are calculated independently. Fine root area is derived 

on a 1:1 basis from leaf area. Meanwhile, coarse root biomass is calculated as the product to above-ground biomass 

with a root-shoot ratio, this root-shoot itself calculated as ratio of realized tree height to maximum species height, 720 

positively modulated by the mean of past drought indices (Morin et al., 2021). This formulation, shown in Eq. 23 

to 25,  follows the conclusions of Ledo et al., 2018 which identifies size and past droughts as the main factors 

driving root-shoot. These simple equations allow PHOREAU to capture several well-established characteristics of 

the evolution of coarse and fine root biomass. 

 725 

𝑅/𝑆		=>?@AB>C,B	D =	𝑅/𝑆EAD,B +
F
G
∗ 𝐴𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 +	F

G
∗ 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡														Eq.23 

 

𝐴𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 0𝑅/𝑆)/0,& −	𝑅/𝑆)-3,&4 ∗ b1 − c
I%-4J'f

I)/06
de																																	Eq. 24 

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 0𝑅/𝑆)/0,& −	𝑅/𝑆)-3,&4 ∗ ∑ (𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝐼𝑛𝑑𝑒𝑥-)3
-K(3:!") 									Eq. 25             

 730 

 

  

Similarly to leaf shedding, fine root area tends to decrease in response to past drought events (Hartmann, 2011; 

Brunner et al., 2015). Meanwhile, total root biomass relative to aboveground biomass (the root-shoot ratio) has 

repeatedly been shown to be positively correlated to past drought events (Mokany, Raison and Prokushkin, 2006), 735 

and tree species adapted to more xeric climates have higher root-shoot ratios and deeper roots than those adapted 

to wetter conditions. These patterns, captured by PHOREAU (Fig. 4), are in accordance with Optimal Resource 

Partitioning theory (OPT), which predicts trees should increase their absorptive capacity relative to their 

transpiring surface under short water supply (Coomes and Grubb, 2000; Hertel et al., 2013). 

 740 

Another observation captured by deriving root biomass from relative height in PHOREAU is the negative 

correlation between root-shoot ratio and above-ground biomass (Mokany, Raison and Prokushkin, 2006; Ledo et 

al., 2018). Because tree height in PHOREAU tends asymptotically towards the species’ maximum height 

following a parabolic curve, as trees become older they allocate proportionally more growth to their diameter than 

to their height — and to their roots in the new formulation. Following Konôpka et al., 2010, the maximum root-745 

shoot was set to be greater for angiosperms than coniferous trees, who tend to have shallower roots (Schenk and 

Jackson, 2002)  and less variation between juvenile and adult individuals. Another  implication of this formulation 

is that the proportion of fine roots exponentially decreases with total root biomass (Li et al., 2003). - 

n : simulation year ; s : species 
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An emergent property of this framework is that for a given magnitude of water stress, a site which has already 750 

suffered past drought events will suffer less mortality and growth loss than a previously wet site, because of the 

rooting depth adaptation mechanism (Fuchs et al., 2020). This type of plastic adjustment is concurrent with spatial 

variability in tree dieback related to the level of past drought acclimation (Piedallu et al., 2023). Fig. 4 shows an 

example of this emergent behavior, by comparing simulations with two different climatic trajectories. 

 755 

This integration of root plasticity, coupled with leaf shedding, is an important first step in the modelling of tree 

adaptation to drought conditions. However, it by no means provides a complete picture of the various strategies 

used by trees in natura. To refine our approach, the relative importance of past drought conditions relative to that 

of tree allometry in determining total rooting depth could be determined on a species by species basis, instead of 

a simple angiosperm/coniferous split. Even then, root plasticity is only one among many plastic responses to 760 

drought conditions: regulatory responses have been identified in the ectomycorrhizal network, non-structural 

carbohydrate concentration, differential gene transcription and pathways, increased suberin and lignin formation 

in roots, and decreased fine-root turnover rate (Bréda et al., 2006 ; Brunner et al., 2015).   
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5 Figure 4 | Simulated distribution 
and sum of basal area (m2/ha), LAI 
and fine root area (m2/ha) at 
different steps of two 1500 year-
long simulation over 50 
independent 1000m2 mixed 
F.sylvatica and A. alba stands, 
starting from bare ground, using 
edaphic and climatic conditions 
from a beech-dominated Vosges 
stand (RENECOFOR HET 88, 
1969-2020). Yearly climates were 
sampled at random from historical 
data. For both the control (A) and 
acclimatization (B) scenarios, 
incoming rainfall was reduced by 
66% from the 1250th year onward. 
For the acclimatization scenario, an 
additional 33% reduction was 
applied between the 1000th and 
1250th year. 
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2.4.5 Updated core model equations 765 
 
Our main concern when coupling the PHENOFIT, SurEau and ForCEEPS models was avoiding that some 

processes shared by the models be taken into account more than once. For example, we could not directly use the 

global plant fitness output of PHENOFIT, nor its plant survival output, which integrates drought-effects already 

represented by the SurEau model. In the end, we used four main yearly PHENOFIT outputs: leaf unfolding and 770 

senescence dates (𝑡U, 𝑡4), the percentage of uninjured leaves not damaged by frost (𝐼%) and reproductive success 

(𝑅). 

 

Leaf phenology, i.e. leaf unfolding and leaf senescence dates, were used to control plant fluxes (see Sect. 3.2 and 

3.4.3) and the period during which growing degree days (GDD) are accumulated for deciduous species. Evergreen 775 

species are assumed to accumulate energy throughout the year. As the ForCEEPS framework worked at a monthly 

time-step, it was necessary to update the model to calculate GDD using daily temperature data. This introduces 

both inter-species variability in growth, but also intra-species variability between sites and years. This change 

impacts both growth (through the temperature growth-reduction factor 𝐺𝑅'``) and probability of establishment 

(𝑃ghh). See Eq. 26 for the updated calculation of annual GDD sums, including phenology and microclimate, of a 780 

tree of species 𝑠 and average weighted foliage height ℎ, with 𝑇3 the base temperature (𝑇3 = 5.5°𝐶). 

 

𝐺𝐷𝐷J& =	∑ 𝑚𝑎𝑥	(𝑇J
E';,6

EK'e,6
− 𝑇")																																																																																																						Eq. 26 

Climate-induced leaf loss was integrated into ForCEEPS as a modification to the previously existing crown length 

reduction factor 𝐺𝑅*+,-.Jd.')(, which represents the impact of leaf density on growth through carbon 785 

assimilation. While in the previous ForCEEPS framework trees could only lose leaves through a lack of light 

availability (the 𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, presented in Morin et al. 2021), PHOREAU also captures drought-induced 

and frost-damage leaf loss, which are integrated in the updated calculation for 𝐺𝑅*+,-. as shown in Eq. 27 to 29.  

This is a first approach, following Wang, Zhou and Wang, (2021). We are aware this representation is incomplete, 

and does not account for leaf regrowth, or differential effects according to tree age and size: the absence of an 790 

explicit representation of source and sink compartments, and the lack of tree age data to implement an age-

differentiated response to leaf loss, was a limiting factor.  

 

𝐺𝑅H=IJD = 𝑀𝑖𝑛(𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	 × 𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 × 	𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 1)										 Eq. 27 

𝑓𝑟𝑜𝑠𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 	1 −	 (!:H7)
".M

																																																																																																						Eq. 28 795 

𝑑𝑟𝑜𝑢𝑔ℎ𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 1 − !
=';:'eB

∑ 	';
'e h

𝑃𝐿𝐶'																						𝑃𝐿𝐶% > 10%
	0																														𝑃𝐿𝐶% ≤ 10%																								 Eq. 29 

  

∆𝐷 = 	∆𝐷(N' 	× 	 j𝐺𝑅,-4J' × 𝐺𝑅4OO × 𝐺𝑅O6(P4J' × 𝐺𝑅&(-,i 	× 𝐺𝑅+6(53																														 Eq. 30   
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Phenofit reproductive success, calculated as the product of the proportion of injured flower-fruits and the 800 

proportion of fruits that reach maturity, was used to update the different ForCEEPS regeneration modules. In 

particular, the yearly number of potential seedlings (𝑛j,)d.)&#%Kdd`%&.'!,!)	for a given species, in addition to its 

light-tolerance parameter 𝑘𝐿𝑎, now incorporates its yearly phenology-based reproductive success 𝑅! as shown in 

in Eq. 31. Once the number of potential seedlings for a given species has been determined, the probability of 

establishment of each individual seedling 𝑃d!),! is unchanged from the ForCEEPS framework (Eq. 32, with details 805 

in Morin et al., 2021), but indirectly integrate the refinements in the calculation of phenology and microclimate 

(through 𝑃ghh), light availability at soil level (through 𝑃J0), and soil water balance (through 𝑃h+). 

 

𝑛>('%3'-/,Q%%O,-34&,& = 0.006 × 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒)> × 𝑘𝐿𝑎 × 𝑅&																																																								Eq. 31 

𝑃%&',& = 𝑃Rk + 𝑃SAA + 𝑃A6 + 𝑃T6 + 𝑃?U + 𝑐%&'																																																																												Eq. 32 810 

 
Tree mortality was simply updated to reflect the new cavitation mortality mechanism described in Eq. 15. With 

𝑃3	and 𝑃' respectively the background and growth-related mortality components described in   Morin et al., (2021), 

the chance that a given tree dies on a given year is such that:   

 815 

𝑃)(6' = 𝑃+/7-'/'-(38(6'/,-'9 + 01 − 𝑃+/7-'/'-(38(6'/,-'94 	× 𝑚𝑎𝑥0𝑃", 𝑃44																												Eq. 33 

 

2.5 Model calibration and simulation initialization 
 
 820 
Species parameters. Species parameters were not tuned on the basis of the evaluation datasets, and, for the 

majority, correspond to traits determined a priori from the literature and experimental results. A full list of the 

species parameters used in PHOREAU can be found in Table S13, with accompanying descriptions, examples, 

and data source references. 

 825 

Site parameters. Site climatic and edaphic conditions were constructed using a mix of on-site measurements, and 

publicly available European datasets (see Sect. 3.1).  

 

Crown-length Bootstrapping. To avoid initial oscillations in stand leaf area resulting from year-wise adjustments 

of tree crown length based on above leaf area, an algorithm, presented in Appendix M, was developed to initialize 830 

all tree crown lengths at equilibrium values at the beginning of the simulation. 
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3 Model Evaluation 835 
 

 
 

 

 840 

The key novelty of the PHOREAU model is that it is designed to predict a wide range of forest characteristics and 

ecosystem functioning features, occurring at various scales. Therefore, we evaluated the model across a broad 

spectrum of outputs, ranging from daily plant physiological measurements to long-term species composition 

predictions. This comprehensive approach allowed us to avoid one of the common pitfalls of gap-model, which 

are often validated on a single integrative metric — such as predicted total stand basal area — which limits the 845 

robustness of the predictions under future conditions. By directly assessing the model’s ability to reproduce 

intermediary variables, such as leaf area indices or soil water fluxes, we could control for common biases that may 

arise from errors offsetting each other under current conditions, which may not hold true when projecting into 

future climatic scenarios. 

 850 

Depending on the targeted variable (and especially the available data to characterize it), the model evaluation was 

conducted on certain sites in France, or on many sites over Europe. Because PHOREAU is intended to be 

continuously improved and refined over time, the validation protocol and all associated data — summarized in 

Fig. 5 — will serve as a baseline to evaluate any future modifications to the model. 

 855 

 

 

 

 

Proposed framework for PHOREAU validation

ICOS
Validation1

Simulation Length

Input data requirements

Indication of global performance

Usefulness for calibration

ICP II
Validation2 PNV

Validation3

v Evapotranspiration
v Soil water quantity
v Stem water potential
v Stand mortality

v Leaf area index
v Tree growth
v Stand productivity

v Long-term species 
composition

Figure 5 | Proposed framework for PHOREAU validation. In red the evaluation dataset (described in Sect. 
4.1), in green the evaluated model outputs. 
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3.1 Data sources 860 
 
 
3.1.1 ICOS sites 
 
We used data from the Integrated Carbon Observation System (ICOS) for our most in-depth validation protocol 865 

that includes hydrological, growth, and mortality components. In particular, we selected four forested sites from 

the terrestrial ICOS Ecosystem network: Puéchabon, Font Blanche, Hesse, and Barbeau. Together these sites 

represent a diversity of the climatic, edaphic, and biotic conditions that can be found in France (Fig. 7). Refer to 

Appendix N for general details on the ICOS network.  

 870 

A preliminary task was building an exhaustive database of all relevant input and output variables over the selected 

sites. This was made possible by the collaboration of each of the site PIs, especially for non-flux data that was not 

always readily available on the ETC database (Reichstein et al., 2005; Papale et al., 2006). Table 1 provides a 

summary of the ICOS data sources used in the model evaluation, as well as some of the main site characteristics, 

while a more in-depth description of each site can be found in supporting information (Appendices O, P, Q and 875 

R). Eventual gaps in data were corrected by selecting, for each of our four sites, the simulation period where the 

most harmonized data was available. Fig. 6 shows a simulated representation of the initial state of each inventory, 

highlighting the structural diversity across sites, and Fig. W1 a vertical representation of leaf area distribution. 

 

 880 

Figure 6 | 3D 
vizualisation of 
ICOS stands used 
for in-depth 
validation. 
Visualisation 
generated by the 
PHOREAU model, 
on the basis of 
initial inventories. 
 

Q. ilex

P. halepensis

Q. petraea

C. betulus

Species

F. sylvatica

B. pendula

Puéchabon Font Blanche

Barbeau Hesse

3 patches 
of 100m2

24 patches 
of 267m2

9 patches 
of 1000m2

4 patches 
of 300m2
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(Delpierre et al., 2016; Briere et al., 2021; Maysonnave et al., 2022) 885 
 
(Simioni, Marie and Huc, 2016; Moreno et al., 2021) 
 
(Granier, Biron and Lemoine, 2000; Dufrene et al., 2005; Granier et al., 2008) 
 890 
(Rambal et al., 2004; Limousin et al., 2012, 2022; Gavinet, J.-M. Ourcival and Limousin, 2019) 

3.1.2 ICP II sites 
 
To evaluate our model’s predictions of tree and stand productivity, potential natural vegetations, and observed 

foliage areas, we used 250 plots spread across Europe, from 37.03° N to 69.58° N, and 8.17° W to 30.71° E, 895 

covering most of the major European species (Fig. 7 . They cover a large range of environmental conditions, with 

mean annual temperatures (MAT) ranging from –1.62 to 17.6 °C, mean annual precipitation sum (MAP) ranging 

between 405 and 2707 mm, growing degree days (GDD) ranging from 475 to 4287 °C, and available water 

quantities ranging from 30 to 671 mm over the soil profile. Refer to Fig. 17 for the distribution of site abiotic 

conditions, and Table S2 for a detailed site by site breakdown. 900 

 

The RENECOFOR network. Following the framework of the ForCEEPS validation (Morin et al., 2021), the 

RENECOFOR permanent forest plot network was used as the primary validation dataset (Ulrich, 1997). 

RENECOFOR makes up the French portion of the European ICP II network. Comprised of 102 plots (ca. 0.5 ha) 

in even-aged managed forests, each composed mostly of a single dominant species, they cover most of the main 905 

tree species and environmental conditions in France — with the notable exception of Mediterranean conditions. 

From the year 2000 onwards, the plots were exhaustively inventoried every five years, as well as before and after 

Barbeau Font-Blanche Hesse Puéchabon
Location 48°28ʹN, 2°46ʹE 1 43°44ʹ29ʹ́ N, 3°35ʹ45ʹ́ E 1 48°40ʹ30ʹ́ N, 7°3ʹ59ʹ́ E 1 43°14ʹ27ʹ́ N, 5°40ʹ45ʹ́ E 1

Altitude 100 m above sea level 1 425 m above sea level 1 300 m above sea level 1 270 m above sea level 1

Simulation Period 2006-2021 2007 - 2020 1999 - 2010 2003 - 2020
Simulation Patch Area 9 x 1000 m2 24 x 267 m2 4 x 300 m2 3x 100 m2 (MIND control plots) 4

Stand Inventory Basal area aggregated by size and 
species s

Individual DBH measurements s Individual DBH measurements s Individual DBH measurements s

Mean annual temperature 11.2°C 1,3 14.8°C s 10.1°C s 13.6°C 1

Mean annual precipitation 677 mm 1,3 703 mm s 948 mm s 987 mm 1

Soil Description Endostagnic luvisol over 
calcareous bedrock 4

Silty clay loam 
50%-90% rock fraction
Limestone bedrock 2

Luvic cambisol with local stagnic 
tendencies
Deep loam clay layer 1,2

Silty clay loam 
75%-90% rock fraction
Limestone bedrock 3

Available Soil Water Quantity 
(over 5m profile) 405.3 mm 3 (extrapolated) 178.4 mm s 447.9 mm 2,3,4 (extrapolated) 130 mm s

Dominant tree species Sessile Oak (Quercus petraea)
European hornbeam (Carpinus 
Betulus) 1

Aleppo pine (Pinus halepensis 
Mill. )
Holm oak (Quercus ilex L.) 1

European beech (Fagus Sylvatica 
L.)
European hornbeam (Carpinus 
Betulus)
Silver birch (Betula Pendula)  1

Holm oak (Quercus ilex  L.) 1

Initial Basal Area 25.4 m2 / ha s 19.6 m2 / ha s 19.4 m2 / ha s 30 m2/ ha 3

Dominant Tree Height 25 m 1 Pine : 13.5 m 1

Holm Oak : 5.5 m 1
18.3 m 1 5.5 m 1

Initial Stem Density 212 / ha 2 1008 / ha s 3297/ ha 1 4900 / ha 3

Stand thinnings 2011 : 15% of basal area s No 2005 : 25% of basal area
2010 : 15% of basal area s

No

Leaf area index (LAI) 3.5 — 6.4 s, 2 2.9 2 4.6 — 7.6 1 2.2 2

Flux data Provided by Site PI Provided by Site PI Provided by Site PI Provided by Site PI
Tree water potentials Provided by Site PI Provided by Site PI Betsch et al. , (2011)   

Peiffer et al. , (2014)
Provided by Site PI

References 1 : Delpierre et al., 2016
2 : Briere et al., 2021
3 : Maysonnave et al. , 2022
s : Site PI

1 : Monero et al.,  2021
2 : Simioni, Marie and Huc,  2016
s : Site PI

1 : Granier et al.,  2008
2 : Dufrene et al.,  2005
3 : Granier et al., 2000b
4 : Tóth et al , 2017
s : Site PI

1 : Limousin et al., 2012
2 : Limousin et al.,  2022
3 :  Rambal et al., 2014
4 : Gavinet, Ourcival and 
Limousin,  2019
s : Site PI

Table 1  |  Selected stand characteristics for the four ICOS sites used in the in-depth PHOREAU validation, 
with associated data sources. 
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every eventual thinning. After the removal of the plots that had suffered the strongest perturbations — and in 

particular the 1999 windstorm — 97 plots remained. With these, we constructed 192 testing datasets, by grouping 

for each plot between 2000 and 2021 every pair of inventories that were separated by a period of at least four years 910 

within which no disturbance was recorded. The mean initial basal area of the plots was 28.3 m2/ha, while the time-

interval between inventories ranged from 4 to 15 years, averaging at 7.1 year. As a rule, we avoided longer time-

lapses, which would have mechanically improved simulation results, while giving less information on true model 

performance.  

 915 

The ICP II network. In addition, we also used 148 plots from the International Co-operative Program on 

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests), which comprises a network of 

intensively monitored forest sites (level II plots) distributed across Europe (de Vries et al., 2003; Schwärzel et al., 

2022). These plots, located in various European countries, allowed the testing of the model over a wider range of 

abiotic and biotic conditions. This extension of the validation protocol was facilitated by the fact the RENECOFOR 920 

network is the French declination of the European-level ICP II program, with comparable protocols and 

measurements. Unlike for RENECOFOR, each plot corresponds to exactly one simulation dataset, with no repeat 

inventories separated by intervals of years. The mean initial basal area of the plots was 28.1 m2/ha, while the time-

interval between inventories ranged from 2 to 10 years, averaging at 4.6 years (refer to Table S2 for details on 

each individual simulation dataset). 925 

 

P. sylvestris (47)
P. pinaster (11)A. Alba (16)  

C. betulus (7)

Pin. nigra (5)

P. menziesii (6)

Q. petraea (24)

F. sylvatica (58) 
Q. ilex (9)

P. halepensis (3)

P. abies (37)

Q. robur (18)
L. decidua (3)

97 RENECOFOR sites
148 ICP II sites
4 ICOS sites

Fig. 2 | Spatial distribution of sites used for PHOREAU validation. Sites are color-coded based on the
dominant species identified in the inventory (see legend in top-left). Red-bordered diamonds represent the
four ICOS site (Puéchabon, Font-Blanche, Barbeau, and Hesse) selected for in-depth hydraulic validation.

Figure 7 | Spatial distribution of sites used for PHOREAU validation. Sites are color-coded based on the 
dominant species identified in the inventory (see legend in top-left). Red-bordered diamonds represent the 
four ICOS site (Puéchabon, Font-Blanche, Barbeau, and Hesse) selected for in-depth hydraulic validation.  
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3.1.3 Climate and soil data   
 
PHOREAU requires detailed daily climatic inputs, as well as comprehensive soil moisture retention measurements 

(see Table 1). To evaluate PHOREAU we used the ERA-5 Land dataset, a climate reanalysis providing various 930 

fields over the world at ~9km resolution (Muñoz-Sabater et al., 2021). The hourly data was aggregated to produce 

daily time-series from 1969 to 2021 over Europe for our study. Potential evapotranspirations were then calculated 

at the same resolution using the Penman-Monteith equation (Monteith, 1965).  

 

PHOREAU requires, for each layer of soil (in this study 30 layers, up to a total depth of 5m, see Sect. 3.4.4), the 935 

fraction of coarse elements, as well as the parameters of the Van Genuchten water retention curve which describes 

the soil texture (Van Genuchten, 1980). These parameters were obtained for several depths from the European 

Soil Hydraulic Database (ESDAC) (Tóth et al., 2017), and interpolated over the height of the soil profile. 

 

The resulting ESDAC soil and ERA-5-Land climate parameter files were used as a baseline for our European 940 

validation, and were directly used for the ICP II plots, for which no other climatic or soil data was available. When 

possible, we completed this continental-scale data with higher-resolution measurements. Field measurements were 

available for all four ICOS sites, as well as for the RENECOFOR plots for which we used a combination of soil 

measurements and the SILVAE climate time-series to refine our validation. The mean-correction method used to 

integrate daily ERA-5 and monthly SILVAE climate time-series is presented in Appendix T. The workflow for 945 

climate reconstruction is summarized in Fig. 8. 

 

On-site climate measurements were available for 26 of the 102 RENECOFOR sites (see Table S4 for the list of 

sites). For some of the sites the measurement periods only partially matched the simulation periods, while for 

others they were continuous from 2000 to 2021. These datasets, although not directly used in our evaluation 950 

protocol (so as not to bias our results for certain sites and species) were instead used to validate our climate 

reconstruction: first through direct comparisons of climate variable means and variances, and then by comparing 

the outputs of the ForCEEPS simulations carried-out with on-site vs. reconstructed climatic data (refer to Table 

S13). 

 955 

Local measurements of SWHC were available up to a depth of 1 meter for all RENECOFOR plots (Brethes and 

Frankreich, 1997). Additional measurements were available up to 2 meters for more than half of the plots (Brethes 

and Frankreich, 1997; Lebourgeois, 2006; Guillemot, unpublished data), which were used to refine validation soil 

parameters. 

 960 
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3.2 Evaluation Protocol 965 
 

3.2.1 Evaluation against intra-annual stand fluxes and tree hydraulics 
 
For each of the four ICOS sites, model predictions were compared to observations at two distinct levels. First for 

stand-level structure, focusing on the annual trends of leaf area, basal area, and tree mortality, for which statistical 970 

metrics were not applied, but predictions instead served as a baseline to identify discrepancies between observed 

and predicted fluxes (but refer to Sect. 4.5 and 4.6 for direct evaluations on stand productivity and leaf area).  

 

Second, for stand fluxes and tree functional dynamics, measured at the daily level. The performance of the 

PHOREAU model in reproducing the hydraulic functioning of forest stands was assessed for the following 975 

variables (from the most aggregative to the most specific): stand real evapotranspiration (ETR); evolution of soil 

water content (SWC); tree transpiration derived from sapflow; and stem water potential. Model performance was 

assessed using the Pearson correlation coefficient (r), the root mean square error (RMSE) and the mean deviation 

(MD) between observations and model predictions. 

 980 

3.2.2 Evaluation against leaf area index 
 
The evaluation of PHOREAU’s ability to predict leaf area indices from inventories was realized on two different 

levels: first, by comparing model results to those obtained from satellite data for 340 sites spread over Europe 

featuring a large range of tree species; second, by comparing model results to LAI observations inferred from litter 985 

retrieval experiments for a few dozen sites in France.  

Selection of validation plots, constitution of PHOREAU simulation inventories for each plot.

97 RENECOFOR sites148 ICP II sites 4 ICOS experimental sites 
(Puéchabon, Font 

Blanche, Barbeau, Hesse) 

ERA-5 LAND daily climate  
data : 1969-2022

SILVAE monthly temperature and 
precipitation : 2000-2014

On-site measurements

Bi
as

 co
rr

ec
tio

n

Comparaisons for 26 sites

Figure 8 | Summary of the workflow used for constructing PHOREAU evaluation inventories and climate 
datasets.  
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The novelty of this kind of validation, as well as its importance when considering the fact PHOREAU predicts 

plants water use without any a priori fixing of foliage area (unlike most other tree hydraulics models), are 

presented and discussed in further detail in Appendix U.  990 

 

The LAI satellite data used was retrieved from the Copernicus Global Land Service time series derived from daily 

PROBA-V satellite observations between 1999 and 2020 — first at a 1km resolution, then at 300m from 2014 

(Fuster et al., 2020). For all RENECOFOR and ICP II sites and dates used for productivity validation (see Table 

S2) we compared LAI values predicted from the inventories at the start of the simulation, to those observed by 995 

PROBA-V and averaged over the summer months of the given year (but note these values are themselves uncertain 

(Fang et al., 2019) and likely underestimated for the denser sites).  

 

LAI evaluation on litter data was restricted to those RENECOFOR sites where such data was available — mostly 

beech and oak sites, excluding coniferous-dominated stands not suited to litter retrieval (Ulrich, 1997). 1000 

 

3.2.3 Evaluation against productivity 
 
For each of the 340 selected RENECOFOR and ICP II simulation plots, five patches of 1000 m2 were initialized 

using the inventory of the first inventory campaign (see Table S2). For each patch, trees were sampled at random 1005 

within the first inventory, until the basal area per hectare of the simulated patch matched that of the original 

inventory. Sampling was done without repetition within each patch, but with repetition among patches. Trees that 

were absent from the second inventory or found dead were kept in the sampling in order to match simulated plots 

to real inventories, but were removed after for growth comparison. As the time step for validation was deliberately 

kept short, model mortality — either due to stress, age or density — were deactivated for this productivity 1010 

validation protocol, so as to have for each sampled tree the observed and simulated final diameter. To benchmark 

model performance, PHOREAU simulation results were compared against ForCEEPS predictions.  

 

For tree species currently not parametrized for ForCEEPS (see Table S13 for a list of the 35 parametrized species), 

such as Pyrus communis or Ilex aquifolium, we used one of the generic sets of parameters. In addition to mortality, 1015 

seedling regeneration was also deactivated in the model, due to the short time scales considered. The crown A1 

ratio between tree height and foliage height was initially set at the species maximum value, and initialized with 

the canopy bootstrap algorithm (see Fig. M1).  

 

Simulations were run for each site over the time periods indicated in Table S2, repeated five times for each of the 1020 

five sampled patches. We compared simulated and observed basal area growth at both the tree scale and the stand 

scale, using predicted and observed basal area increments (BAI) normalized to mean annual values. While 

comparing actual, instead of averaged, annual increments would have constituted a stronger test, this data is not 

available for size of plots and the range of species and climatic conditions considered here. For stand-level 

comparisons, results were directly averaged over the five patches. The performance of both the PHOREAU and 1025 
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ForCEEPS model were assessed using the Pearson correlation coefficient (r), the root mean square error (RMSE), 

the average bias (AB), and the average absolute bias (AAB) between observations and model predictions.  

 

3.2.4 Evaluation against potential natural vegetation 

To evaluate the model’s ability to predict forest composition through long term simulations for a broad range of 1030 

climatic conditions — thus integrating the effects of all the different processes for mortality, reproduction, 

phenology, microclimate buffering effect, and competition not directly captured by shorter-term validations 

protocols —, we compared community compositions simulated by PHOREAU with the predicted potential natural 

vegetation (PNV) along an environmental gradient. Here, similarly as in Bugmann (1996) and Morin et al. (2021), 

potential natural vegetation is simply defined as the assumed dominant tree species, assuming no large 1035 

disturbances, in a space spanned by mean annual precipitations (MAP) and mean annual temperatures (MAT), 

following Ellenberg (1986), Rameau et al. (2008), and San-Miguel-Ayanz et al. (2016). For this validation, we 

used the same 250 sites (RENECOFOR and ICP II) used for the productivity validation, spanning across all the 

different PNV conditions described in Ellenberg (1986) (Fig. 17). 

For each of the 250 sites, we ran 2000-year simulations starting from the bare ground. This simulation length – 1040 

accounting for seedling establishment, tree growth and mortality – was necessary to ensure the communities were 

no longer in a transient phase, and had reached the final stage of forest succession with a pseudo-equilibrium 

composition. The 2000-year climate time series was obtained by randomizing the years for which climatic data 

was available (1969-2020), which preserved inter-annual variability in climate, but avoided any cyclic trend. For 

each site we considered 50 independent patches of 1000 m2. At the end of the simulation, aggregate species basal 1045 

areas per hectare were extracted for each simulated site, and compared to assumed PNV dominant species.  
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4 Results Analysis 
 

4.1 Evaluation of water balance and plant hydraulic functioning 1050 
 
The results of the in-depth evaluation of PHOREAU at the four highly instrumented ICOS sites demonstrated a 

good ability of the model of the model to reproduce observed ecophysiological and dendrological data across a 

wide range of scales. The model closely followed observed trends in stand basal area (average R2 of 0.59, see 

Table S15), despite the inherent challenge of predicting individual tree mortality (Fig. W3). It accurately captured 1055 

both the magnitude and variability of dieback across sites, in terms of both tree density (Fig. 9) and basal area loss 

(Fig. W5), with a marked increase in the rate of basal area loss in the latter years of each simulation; however, the 

model slightly overestimated mortality numbers on average and particularly at Hesse (+ 56%, see Table S17), as 

well as the share of large tree death relative to medium trees and saplings. Predicted foliage area results aligned 

well with observations in the two open evergreen sites with low mean deviations (Puéchabon: 0.19; Font-Blanche: 1060 

0.35, Fig. W4, Table S16). PHOREAU captured the quick regrowth in foliage area observed at Hesse after the 

2005 cut (Granier et al., 2008); however, when comparing absolute values, PHOREAU noticeably underestimated 

foliage area in the two denser deciduous forests, consistent with prior validation results on leaf area (see Sect. 5.3). 

Despite these biases, the overall alignment between predicted and observed forest dynamics provides a solid 

foundation for comparing stand functioning and tree physiological responses at fine temporal resolutions.  1065 

 

The PHOREAU model predicted daily evapotranspiration (ETR) across three of the four ICOS sites, with 

relatively low mean deviations (Puéchabon: 0.03; Barbeau: –0.24; Hesse: 0.8) and good Pearson correlations 

(Puéchabon: 0.64; Barbeau: 0.79; Hesse: 0.62) between observed and predicted values (Fig. 10 and V6). At Font-

Blanche, correlation was moderate (r = 0.48, p < 0.001), as the model underestimated summer ETR while 1070 

overestimating winter and autumn ETR. This discrepancy, particularly the underestimation of Q. ilex transpiration 

(Fig. W8), may stem from biases in the model’s repartition of leaf area between Q. ilex and P. halepensis and a 

dampened response of P. halepensis stem water potential to summer drought (Fig. 12). Over time, across all sites, 

the differences between predicted and observed monthly cumulative ETR became more pronounced, reflecting a 

drift a between predicted and observed forest structure. The model also underestimated ETR during the leafless 1075 

winter months at Barbeau and Hesse, which could result from the exclusion of understory shrubs from the 

simulations. 

 
PHOREAU consistently demonstrated good performance in predicting the daily evolution of soil water content 

(SWC), with low mean deviations (Puéchabon: 15.4; Font Blanche: 1.03; Barbeau: –47; Hesse: –31.4; Table S12, 1080 

Fig. W7) and high Pearson correlations (Puéchabon: 0.8; Font Blanche: 0.86; Barbeau: 0.92; Hesse: 0.78) between 

observed and predicted values. The model generally captured the seasonal refilling of soil water reserves well (Fig. 

11). However, at Hesse, predicted SWC noticeably lagged behind observations: this is consistent with the model’s 

overestimation of F. sylvatica water stress during the 2003 drought (Bréda et al., 2006), and the overestimation of 

mortality and post-2003 stand ETR (Fig. 11). The possible existence of a temporary aquifer present at the site that 1085 

was not represented in the model may likely contribute to these discrepancies (Joetzjer & Cuntz, pers. comm.). 
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The model also accurately captured the variability in measured leaf water potential across species, seasons, and 

times of day (Fig. W8). It achieved  strong correlations between observed and predicted values for both daily 

minimum stem potential (r = 0.71, p < 0.001, n = 208; Table S10) and predawn stem potential (r = 0.79, p < 0.001, 1090 

n = 303; Table S9), with fair levels of prediction accuracy (RMSE = 0.92 and 0.89, respectively). Despite these 

strong correlations, the model tended to attenuate the range of observed potentials, underestimating predawn 

potentials (MD = – 0.5) while simultaneously overestimating minimum potentials (MD = 0.53). This bias was 

particularly noticeable in the predawn potentials of F. sylvatica (MD = –1.5), likely in link with the lag in the soil 

water refilling, though the overall strong correlation (r = 0.99; Table S9) highlight the model’s ability to reproduce 1095 

relative trends in tree stress. 

 

 
 
 1100 
 
 

N = 99.07 / ha N = 145.6 / haN = 1800 / ha N = 1737.88 / ha

N = 99.45
N = 587.78 / ha

N = 189.14 / ha N = 296.1 / ha

No Data

1.83%  1.28%  1.37%  2.44%  
0.49%  0.86%  0.85%  1.36%  

2.72%  2.46%  
0.87%  0.49%  1.54%  2.15%  

Figure 9 | Predicted versus observed annual tree mortality. For 
each simulation site, the bars depict the total annual number of dead 
trees, irrespective of cause, broken down by species and size class 
contributions (refer to Annex X for details). Observed values are 
derived from stand inventories, while predicted values are generated 
by the PHOREAU model. Also shown are the annual mortality rates, 
calculated relative to the initial number of trees for two distinct time 
periods in each simulation, along with the total number N of dead trees 
by hectare. Transparent bars indicate years with thinnings (see Table 
S17 for details), which are excluded from the mortality statistics. 
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 1105 
 
 
 
 
 1110 
 
 
 

Figure 10 | Predicted versus observed evolution of monthly real 
Evapotranspiration (ETR). For each simulation site, the bars depict the 
monthly ETR (mm) predictions generated by the PHOREAU model, 
broken down by source of flux. Soil and intercepted water evaporation 
respectively originate from the first layer of soil and the water stored on the 
surface of leaves, while the two other sources are transpiration from 
different compartments of the PHOREAU tree (refer to Table S11 for 
details). The black points indicate the observed monthly actual 
evapotranspiration (with interpolated lines) representing the total water 
vapor released from the soil and vegetation into the atmosphere, aggregated 
from hourly or sub-hourly measurements obtained from each site’s flux 
tower. For the Hesse site, observed ETR has been upscaled from measured 
sap flux densities. 
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No Data

Depth : 0-150 cm

Depth : 0-50 cmDepth : 0-150 cm

Depth : 0-150 cm

Figure 11 | Predicted versus observed evolution of soil water content (SWC). For each simulation site, the 
black points indicate the observed daily actual SWC, with interpolated lines. The stacked bars depict the daily 
SWC (mm) predictions generated by the PHOREAU model, with individual contributions of each soil layer 
stacked and color-coded by soil layer (see Fig. W2 for layer details, and Table S12 for statistics). The predictions 
are confined the maximum measured depth for each site, as indicated in the upper right corner of the figure.  For 
Barbeau and Font Blanche, observed SWC were directly obtained from site PIs; for Puéchabon and Hesse, they 
were interpolated from soil relative humidity (RH%) measured at different depths, using the same rock fractions 
as used in the simulation. 
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Figure 12 | Evolution of predicted versus observed stem water potentials. For the dominant species of the 
four ICOS simulations, the blue line depicts the daily evolution of the stem water potentials (mPa) generated by 
the PHOREAU model and averaged over the aggregate trees of the species (refer to Appendix G for details on 
the aggregation method). The red points represent the observed water potentials, limited to the years for which 
observational data is available (data sources are detailed in Table 1, and associated statistics in Table S10). For 
Puéchabon, Font Blanche and Barbeau sites, the minimum daily observed and predicted water potentials are 
shown. For Hesse, where only predawn observations are available, the maximum predicted water potential is 
used instead. 
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 1145 
 
 

4.2 Evaluation against leaf area index 

Beyond local litter-based measurements, PHOREAU also demonstrated a reasonable capacity to estimate stand 

leaf area index (LAI) from observed data across many species and site conditions throughout Europe. When 1150 

compared to PROBA-V satellite data (Fig. 14), the model yielded a good correlation between observed and 

predicted LAI values (r = 0.55, p < 0.001, n = 340; Table S6), with acceptable prediction accuracy (RMSE = 1.41, 

AB = 0.08). Although no significant systematic bias was detected, the model tended to dampen the observed 

variability in LAI, slightly underestimating LAI in denser forest canopies while overestimating it in more open 

plots. 1155 

A species-specific analysis revealed notable biases for certain species. The model consistently overestimated the 

LAI of dense coniferous plantations, particularly for species such as P. abies, A. alba, and P. menziesii. 

Conversely, it significantly underestimated LAI for low basal area inventories dominated by P. pinaster, P. 

Pearson Correlation : 0.79***

Mean Deviation : - 0.5

RMSE : 0.88

Nobs : 303

Pearson Correlation : 0.71***

Mean Deviation : 0.53

RMSE : 0.92

Nobs : 208

Q. ilex

P. halepensis

Q. petraea
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F. sylvatica
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Figure 13 | Aggregated 
predicted versus observed 
daily stem water potential. 
All available stem water 
potentials (mPa) observations 
are plotted against the 
PHOREAU predictions for 
the corresponding day and 
species. For each species, the 
full colored lines are the 
regression lines of the linear 
model of the relationship 
between observed and 
predicted minimum water 
potential, with confidence 
interval represented with the 
grey dashed lines. The dashed 
red line is the 1:1 line. (a) 
Comparison with minimum 
water potentials. (b) 
Comparison with predawn 
water potentials. 
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sylvestris, which could partially result from discrepancies between inventories observed and simulated before and 

after thinnings. Overall, while PHOREAU presents a notable improvement in capturing inter-species LAI 1160 

variability compared to the ForCEEPS model (RMSE = 3.42, AB = 0.49; Table S3), it proved less effective in 

predicting small variations in LAI among structurally similar plots dominated by the same species. When 

comparing predicted LAI to those inferred from litter collections (for a smaller subset of oak and beech-dominated 

sites where such data was available) the model did not exhibit any significant bias (RMSE = 0.65, AB = –0.03, n 

= 40 ; Table S7, Fig. W12), but showed only middling predictive power (r = 0.3, p = 0.047; Table S7). While this 1165 

evaluation is necessarily hampered by the fact the observed PROBA-V LAI are themselves reconstructed from 

reflectance values collected at a 300m2 scale, in the future, advances in the measurement of LAI at the local scale 

(LIDAR) will allow finer model calibration and validation.  

 

 1170 
 
 
 
 
 1175 
 

4.3 Evaluation against tree basal area increment  

PHOREAU demonstrated satisfactory predictive capability for tree-level mean annual basal area increment (BAI) 

across diverse species and climatic conditions throughout Europe (Fig. 15). The model achieved a strong 

correlation between observed and predicted values (r = 0.68, p < 0.001, n = 81655; Table S4), with satisfactory 1180 

levels of prediction accuracy (RMSE = 0.00106, AB = 0.225, and AAB = 0.793). However, the model dampened 
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Fig. X | Projected (by PHOREAU) against observed satellite leaf area index (LAI) for all 340
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from the
stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for the
maching coordinate and inventory year, averaged between July, August and September. Stand points are
color coded by dominant species (see legend in bottom left). The size of points shows inventory basal
area. The dashed red-line is the 1:1 line; the black full line represent the regression line of the linear model
between observed and predicted LAI, with confidence interval represented by the grey shaded area.
Associated statistics in top left.
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15 Figure 14 | Projected (by PHOREAU) against observed satellite leaf area index (LAI) for all 340 
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from the 
stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for the 
maching coordinate and inventory year, averaged between July, August and September. Stand points are color 
coded by dominant species (see legend in bottom left). The size of points shows inventory basal area. The dashed 
red-line is the 1:1 line; the black full line represent the regression line of the linear model between observed and 
predicted LAI, with confidence interval represented by the grey shaded area. Associated statistics in Table S6. 
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the observed variability in tree growth, tending to underestimate the productivity of the most vigorous trees while 

simultaneously overestimating growth of the least productive trees. 

When assessed at the species level, the Pearson correlation coefficients varied substantially, from 0.14 for C. 

avellana to 0.913 for U. glabra (Table S4). Prediction accuracy also differed widely among species, with an 1185 

average RMSE of 0.00103 and an AB of 0.34. Correlation coefficients were generally higher for the 13 main 

species of the study (those that dominate at least one of the 340 simulation inventories) compared to secondary 

species (average r = 0.60 and 0.53, respectively), with a pronounced tendency for the model to underestimate the 

productivity of these secondary, generally understory species, whose growth rates were not recalibrated on forest 

growth data in the ForCEEPS study (Morin et al., 2021). 1190 

In comparison with the ForCEEPS model, which was applied to the same dataset (Fig. W13, Table S4), 

PHOREAU demonstrated a moderately improved performance in predicting tree productivity. It yielded higher 

Pearson correlation coefficients, as well as lower RMSE and absolute errors. Despite these improvements, 

PHOREAU's predictions exhibited a comparatively greater average bias.  

 1195 

 
 
 
 
 1200 
 

Pearson correlation : 0.681***

RMSE : 0.00106
Average Bias : 0.225
n : 81655
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L. decidua (780)
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Pin. nigra (872)

F. sylvatica (19718) 

P. montana (1) Q. petraea (5128)

Fig. X | Projected (by PHOREAU) against observed mean annual tree basal increments (BAI) for all
simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded
by species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression
lines of the linear model between observed and predicted tree productivity, with confidence intervals
represented by the grey shaded area (in black the overall regression; coloured lines for species-specific
regressions). Species-specific regressions are only shown for stand dominant species (in bold in legend)
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S1.

16 Figure 15 | Projected (by PHOREAU) against observed mean annual tree basal increments (BAI) for all 
simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded by 
species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of 
the linear model between observed and predicted tree productivity, with confidence intervals represented by 
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions). Species-
specific regressions are only shown for stand dominant species (in bold in legend) Associated statistics for the 
global simulation in top left, while species-specific statistics can be found in Table S1. 
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4.4 Evaluation against stand basal area increment  
 
At the stand level, PHOREAU exhibited robust performance in reproducing mean annual BAI across most species 

and environmental conditions. Overall, there was a strong correlation between observed and predicted values 1205 

across all 340 simulations (r = 0.62, p < 0.001) with a small margin of error between observations and predictions 

(RMSE = 0.23, AB = 3.7%, and AAB = 0.34; Fig. 16, Table S5). However, the accuracy varied when species were 

analyzed individually. While the model generally showed no systematic bias (RMSE = 0.23; AB = –2.2% on 

average), some species exhibited notable biases and variability, particularly in the most productive plots where the 

model tended to underestimate productivity. This was especially evident for P. halepensis (RMSE = 0.35, AB = –1210 

65%) and P. menziesii (RMSE = 0.18, AB = –29%), though both had relatively small sample sizes. Even for Q. 

petraea (RMSE = 0.19, AB = –17%), where sample size was not a limitation, a similar bias was observed. 

 

When examining the relationship between prediction errors and various stand characteristics (Fig. W11), no strong 

systematic biases were identified with respect to site-specific factors such as rainfall, temperature, stand density, 1215 

or simulation duration. However, the regression analysis revealed a weak but statistically significant positive 

relationship between errors and site water-holding capacity (SWHC) (slope = 0.0034, r = 0.138, p < 0.05), 

suggesting a tendency to underestimate productivity on drier soils. Additionally, there was a strongly significant 

negative relationship between errors and initial stand basal area (slope = –0.0044, r = –0.21, p < 0.001), indicating 

that the model underestimates productivity in the most productive stands. 1220 

In comparison to the ForCEEPS model applied to the same dataset, PHOREAU demonstrated enhanced predictive 

accuracy across all evaluated metrics. PHOREAU produced a higher Pearson correlation coefficient than 

ForCEEPS (r = 0.62 vs. r = 0.53 respectively), along with lower RMSE (0.23 vs. 0.316), average bias (AB = 3.7% 

vs. 7.7%), and average absolute bias (AAB = 0.34 vs. 0.44; see Fig. W14, Table S5). These results highlight 

PHOREAU’s improved capability in predicting stand productivity compared to ForCEEPS. 1225 
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 1230 

 
 
 
 
 1235 
 

4.5 Evaluation against potential natural vegetation data 

When comparing the distribution of predicted dominant tree species after 2,000-year simulations along the 

environmental gradient covered by 250 sites across Europe (Fig. 17), the model performed well, with 62% of 

predictions accurately matching observed community compositions, and 24% partially accurate predictions 1240 

(outperforming ForCEEPS’ 43% accurate predictions). Yet, PHOREAU's ability to accurately predict potential 

natural vegetation (PNV) varied depending on site conditions, with a noticeably larger uncertainty for 

Mediterranean forest types, humid beech forests, and mixed montane spruce-beech forests. A detailed view of the 

predicted dominant species (Figure W16) revealed that much of this uncertainty stemmed from PHOREAU's 

tendency to overestimate the competitive advantage of Q. robur relative to Q. petraea and F. sylvatica in both hot 1245 

and mild climates. Despite these discrepancies, the model demonstrated strong predictive performance in extreme 

environments, accurately predicting species composition at both extremely cold and extremely warm sites. 

RMSE: 0.23 
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Fig. X | Projected (by PHOREAU) against observed mean annual stand basal increments (BAI) for
all 340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species
(see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the
linear model between observed and predicted stand productivity, with confidence intervals represented by
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions).
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S2.

Figure 16 | Projected (by PHOREAU) against observed mean annual stand basal increments (BAI) for all 
340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species (see 
legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the linear 
model between observed and predicted stand productivity, with confidence intervals represented by the grey 
shaded area (in black the overall regression; colored lines for species-specific regressions). Associated statistics 
for the global simulation in top left, while species-specific statistics can be found in Table S2. 
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Aa (A. alba); Fs (F. sylvatica); Qp (Q. 
petraea); Qr (Q. robur); Pp (P. pinaster); 
Ph (P.halepensis); Qi (Q. ilex) Circle colors 
indicate the agreement between simulated 
and PNV dominating species after the 2000 
years PHOREAU  simulations. Green: sites 
for which the dominating species was 
accurately predicted. Orange: sites for 
which the second-ranked (by basal area) 
species was accurately predicted, but not 
the first-ranked. Red: sites for which neither 
the first-ranked nor second-ranked species 
were accurately predicted.  
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PNV validation, colored by potential niche 
composition. Shapes indicate prediction 
success, as described above. 
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5 Discussion 1250 
 

5.1 A process-based model to investigate diversity-productivity and diversity-resilience relationships  
 
The difficulties inherent in integrating trait-based processes in a semi-empiric framework justified evaluating 

PHOREAU on a variety of metrics — including predicted foliage area, soil water and stem water potentials — 1255 

which, to our knowledge, has never been attempted before, at least for this kind of model. Furthermore, the bottom-

up approach we have adopted mitigated the risk of error compensation and of equifinality, which often appear 

when some parameters or processes covariate and compensate each other in respect to an integrative metric. 

Avoiding equifinality was crucial to the development of PHOREAU, because as climatic conditions deviate from 

the historical baseline in future years, correlations between processes that were equifinal for historical conditions 1260 

may shift, limiting the ability of the model to accurately predict the impact of climate change on forest functioning. 

While direct validation on annual growth is rarely done for gap models because of the inherent difficulty of 

reproducing such metrics for models not originally designed to work at such short temporal scales (Mette et al., 

2009; Fyllas et al., 2014), the more granular representation of stand functioning of PHOREAU justified our 

evaluation on short-term individual tree and stand productivity. The good performance of the model across the 1265 

wide range of species and conditions used in the productivity and PNV validation — including Mediterranean and 

boreal forests — demonstrates its widespread applicability to European forest ecosystems. Furthermore, the state-

of-the-art validation dataset used in this study will serve as a baseline to assess any further refinements to the 

model, as additional species traits become available.  

 1270 

In contrast to ecophysiological process-based models than can be parametrized using only physiological and 

functional traits (Davi et al., 2005b; Maréchaux and Chave, 2017), PHOREAU eschews a direct representation of 

carbon assimilation and allocation, in favor of a growth-reduction based approach. While this simplification does 

distort actual tree functioning and ignores the importance of carbon reserves in buffering year-on-year growth 

(Körner, 2003), it presents a number of advantages when considering the ecological processes that shape species 1275 

composition. In addition to a significant gain in computing time, it curtails the uncertainty in model predictions 

that can result from equifinality, by limiting the number of variables directly impacting growth. Furthermore, by 

calculating tree growth, leaf area, mortality and establishment rates on the basis of well-established observed 

parameter values, to which process-based reductors are subsequently applied, we were able to maintain realistic 

stand basal and foliage areas over the length of the simulation. This result is a prerequisite to any temporal 1280 

exploration of diversity-resilience relationships in drought-stressed forests: only by accurately predicting the 

evolution of forest foliage and basal area can we then study the effects of species-mixing (Forrester and Pretzsch, 

2015) for forests functioning at eco-hydrological equilibrium. This is why our integrative validation on the ICOS 

sites is an important milestone in the development of hydrology-based forest models: unlike usual hydrological 

validations (Morales et al., 2005), not only did PHOREAU provide robust predictions of water fluxes for many 1285 

years over a diverse set of conditions and species, it did so with no a priori fixing of stand leaf and basal area, 

instead calculating the evolution stand structure on the basis of water-stress feedbacks. 
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5.2 Limitations and future avenues of improvement 1290 
 
Despite good correlations and low average bias, PHOREAU predictions consistently underestimated the observed 

variability across almost all considered metrics, including soil water quantities, stem water potentials, tree 

productivity, stand productivity, and stand foliage areas. This attenuating effect is in itself not surprising given the 

necessary simplifications presented by any modelling approach, and results from a number of unavoidable factors: 1295 

precision of climatic and soil texture data (especially for ICP II sites); utilization of single sets of species 

parameters disregarding intra-specific genetic and phenotypic trait variability; lack of 3D representation of 

competition among trees. While climatic, soil, and species traits inputs can easily be refined for more granular 

simulations at the local and regional level, taking into account site exposition and fertility, the strong hypothesis 

of the PHOREAU model regarding the horizontal homogeneity of competition for light and water inside a patch 1300 

will always be an obstacle to capturing the individual dynamics of trees advantaged or disadvantaged by 

microtopography and spatial allocation of tree crowns and rooting systems. Despite this inherent limitation, the 

integration in PHOREAU of many previously disregarded or implicit processes, including explicit roots, 

phenology, process-based tree hydraulics, and microclimate, has allowed it to outperform the ForCEEPS model 

in better predicting both short-term growth and long-term species composition. Furthermore, the gap between the 1305 

two models’ predictions is likely to become greater under future conditions, where PHOREAU is expected to be 

more robust as it explicitly represents key processes, such as drought stress and phenology, in a more mechanistic 

way. 

 

However, by introducing a more granular representation of tree functioning, PHOREAU has induced a mismatch 1310 

between some of the parameters used in the model and the role they were originally intended and calibrated for. 

This mismatch, particularly evident for the optimal species growth rate parameter (𝑔!) and for foliage allometry 

parameters, is responsible for the difficulty in reproducing the growth of extremely productive trees, and the overall 

underestimation of the productivity of species like P. halepensis, F. excelsior, or A. pseudoplatanus (see Table 

S4). Because the optimal growth rate in ForCEEPS was calibrated for the main French species based on the top 1315 

10th percentile of annual diameter incements measured in the NFI database (IGN, 2020) and for other species dates 

back to even earlier studies (Didion et al., 2009), it is in reality more akin to a growth rate under relatively 

unconstrained conditions than an actual optimum. As we updated the model’s representation of light and water 

use constraints to a more process-based approach, we have likely introduced constraints already implicitly present 

in this aggregated growth rate parameter, essentially penalizing trees twice for the same factor. As we continue to 1320 

refine the PHOREAU model, a major challenge will therefore be recalibrating this parameter to better reflect actual 

potential growth unconstrained by competition, despite inherent difficulties in obtaining such data (Pretzsch, 

2009). 

 
Similarly, the parameters with which foliage area is derived from tree diameter have not been fully updated to 1325 

reflect the new importance of foliage area in driving modelled water fluxes. Despite the many changes introduced 

in the representation of tree crowns and the partial validation on satellite data, the model demonstrated a poor 

ability to predict measured litter LAI for sites of similar composition and basal area. Furthermore, neither satellite 

nor litter-derived total LAI measurements can be used to properly evaluate the predicted vertical distribution of 

leaf area. However, predicted vertical LAI distribution, from which microclimate and individual light-competition 1330 
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constraints are derived, is key to model ecological processes, and should therefore next be examined and validated 

against ground or airborne LIDAR   and microclimate measurements. 

 

Another obvious area of improvement for the model will be a deeper integration of the plant phenology component 

with other modelled processes. In this study leaf unfolding, leaf senescence, and probability of fruit maturation 1335 

were computed yearly for an average individual of each species. This method captured inter-specific differences 

in phenology and temporal light partitioning, but did not account for intra-specific shifts in phenology caused by 

stand structure. By integrating model variables like microclimate, light availability, and water stress as inputs for 

an individual-based phenology calculation, PHOREAU will be able to captured well-established variations in leaf 

phenology between trees of different sociological status (Augspurger and Bartlett, 2003; Cole and Sheldon, 2017; 1340 

Gressler et al., 2015; Schieber, 2012), which are responsible for the persistence of shrubs and saplings in mature 

forests (Gill, Amthor and Bormann, 1998; Vitasse, 2013). 

 

5.3 Applications and future research perspectives 
 1345 

5.3.1 Establishing baseline available water: retro-engineering PHOREAU to predict rooting depths 
 
One of the main causes for the model’s attenuation of variability in stand and tree productivity was the uncertainty 

regarding the actual quantity of soil water available to the trees. This uncertainty is itself the result of a twofold 

gap in information: lack of data for the texture of deeper soil horizons, and the extremely simplified framework 1350 

used to estimate tree rooting depths. By choosing to reduce the wide observed differences in rooting depths across 

biomes (Canadell et al., 1996; Schenk and Jackson, 2002; Fan et al., 2017) and species (Sperry et al., 2002; Fan 

et al., 2017) to a simple equation based only on tree size and an aggregate drought index based on past climatic 

conditions, we intentionally avoided any integration of model results (such as tree foliage area or percentage of 

embolism) in the calculation of rooting depths, as this would have resulted in an optimization of soil available 1355 

water on precisely the variables we were trying to validate. Unlike other process-based models validated on stand 

hydraulic fluxes (Ruffault et al., 2023), the fact that PHOREAU produced robust multi-year predictions without 

using observations to control for stand leaf areas, rooting depths, or actual available water, confirms its possible 

applications to making realistic dynamic predictions across a large range of forests where this data is not available. 

 1360 

To overcome difficulties related to the soil water parametrization, an alternative approach could be used. For 

instance, based on the hydrological equilibrium hypothesis (EHE), which states that, in a given edaphic and 

climatic environment, trade-offs between vegetation water use and drought stress drive canopy density and forest 

composition toward an optimal hydric state (Eagleson, 1982; Caylor, Scanlon and Rodriguez-Iturbe, 2009), and 

following the well-substantiated hypothesis that trees function near the point of catastrophic hydraulic failure with 1365 

narrow safety margins (Tyree and Sperry, 1988; Choat et al., 2012), a retro-engineering of PHOREAU could be 

realized where rooting depths are calculated by optimizing tree available water such that, for a given inventory 

and soil profile (Kirchen et al., 2017), foliage area is maximized (Grier and Running, 1977), and plant minimum 

water potentials are constrained to values to the point of catastrophic xylem failure. Compared to similar EHE-

based statistical (Nemani and Running, 1989) or process-based (Cabon et al., 2018) modelling approaches, this 1370 

retro-engineering of PHOREAU will natively integrate many inter- and intra-specific niche and competition 

https://doi.org/10.5194/egusphere-2025-2110
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 49 

processes that are integral to forests’ actual water use. It will furthermore be a necessary first step in establishing 

a historical baseline when using the model to predict the medium-term impact of global change on forest 

composition and functioning, as available water is a major determinant in predicting drought-induced die-off 

events (Allen, Macalady, Chenchouni, Bachelet, McDowell, Vennetier, Kitzberger, Rigling, Breshears, E.H. (Ted) 1375 

Hogg, et al., 2010; Anderegg et al., 2013; McDowell et al., 2013). 

 

5.3.2 Unraveling the effects of trait diversity on competition and coexistence 
 
The novel approach presented in this study, integrating plant functional traits in a forest dynamics model, was 1380 

developed to improve the generality of the calibration for new species, but also to cope with the difficulties 

encountered by ecologists when testing hypothesized links between trait diversity, species competition and 

coexistence. While differences in traits governing resource use should, intuitively, translate into niche differences 

that maintain coexistence through competition reduction, attempts to directly link trait dispersion with historical 

species coexistence have proven challenging (McGill et al., 2006; Adler et al., 2013). This challenge arises from 1385 

the fact most traits impact competition for several resources at the same time, and that even a temporary advantage 

in growth can actually result in a lower global fitness when considering population dynamics, with for example 

feedbacks on drought-induced mortality (Forrester and Pretzsch, 2015) or frost damage due to early onset leaf 

unfolding (Bigler and Bugmann, 2018). To overcome this difficulty, process-based models of resource competition 

with processes explicitly relying on species traits have been proposed as a way to unravel the mechanisms linking 1390 

trait diversity to forest functioning (Levine et al., 2024). Because the effects of climate change on forests will 

likewise be mediated by complex species mixing effects, the need to develop mechanistic models that bridge the 

gap between trait-based and ecology and empirical modelling has become urgent to assess the short and medium-

terms effects of global warming on existing forests, and discriminate between the possible management scenarios 

available to forest managers.  1395 

 

The PHOREAU model, having been directly evaluated for most of its processes, could be used as a relevant tool 

to identify thresholds conditions for species coexistence, dominance, or extinction. A first parsimonious approach 

could simply consist in identifying the main processes — phenology, water-use, or competition for light — 

limiting a species fitness at the edges of its predicted distribution (Morin, Augspurger and Chuine, 2007). A more 1400 

involved exploratory protocol could follow the methodology outlined in Levine et al. (2024). By considering 

predicted species compositions for a wide range of climatic and edaphic conditions, and taking care to distinguish, 

for each set of condition, the different mechanistic processes which make up a species’ competitive fitness, we 

could establish relationships between aggregated model metrics (for example growth reductors) and underlying 

species traits. These relationships could then be used to predict the impacts of climate change on forest 1405 

composition. In parallel to this approach, and as a prerequisite, predicted species compositions should be compared 

to actual observed compositions, albeit for a much greater set of points than those for the potential composition 

validation presented in this study, dissipating any remaining uncertainties regarding the representation of 

regeneration and mortality, which is one of the main current challenges for forest modelling (Cailleret et al., 2017; 

Vanoni et al., 2019). 1410 
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5.3.3 Evaluating management policies under future climate scenarios 
 
A further policy-relevant application of the PHOREAU model in the coming decades lies in its ability to simulate 

forest management scenarios under different climate trajectories, and evaluate their outcomes based on key 1415 

ecosystem service metrics, including wood production, biodiversity conservation, and carbon sequestration. As 

forests play an increasingly critical role in helping countries meet sustainable development goals (Chapin III et 

al., 2008), and with forests storing roughly half of terrestrial carbon (Friedlingstein et al., 2019), predicting forest 

carbon dynamics and its response to management decisions under climate change has become an essential 

consideration for forest managers. However, while policy makers — supported by the recorded increase in the 1420 

European forest carbon sink in the early 21st century (Pan et al., 2011) — table on a continued increase in the 

share of carbon emissions removed by forests (with a target of 40% in France by 2050), this dynamic has already 

shown signs of slowing (McDowell et al., 2020) as the early forcing effect of climate warming on forest 

productivity is now counterbalanced by increased drought-induced tree mortality (Allen, Macalady, Chenchouni, 

Bachelet, McDowell, Vennetier, Kitzberger, Rigling, Breshears, E. H. (Ted) Hogg, et al., 2010; Hammond et al., 1425 

2022). While previous studies have evaluated the performance of different management strategies for carbon 

sequestration over the next decades based on a priori global forest biomass trends and management rules (Bastick 

et al., 2024; du Bus de Warnaffe and Angerand, 2020), very few models, to our knowledge, have attempted the 

dynamic integration of forest management with stand-specific future conditions to predict the evolution of the 

forest carbon stock. By integrating management, growth, and hydraulic processes, PHOREAU is uniquely 1430 

positioned to simulate more realistic and agile forest trajectories, and to help forest managers by giving them 

insights about how to better adapt forest to new environmental conditions through management actions. 

 

In conclusion, by combining a detailed representation of plant functional traits with the flexibility required for 

large-scale simulations and species calibration, PHOREAU offers a unique compromise between ecophysiological 1435 

realism and operational applicability — making it a valuable tool for both ecological research and forest 

management under climate change. 
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6 Supplementary information 
 
 1455 
Appendix A: Decoupling tree height from diameter: light-dependent plasticity 
 
The predictive power of gaps models is tied with their representation of stand structure. Yet most classic gap 

models, including ForCEEPS, do not simulate a dynamic tree height, instead inferring it from the tree trunk 

diameter through an allometric relationship. It follows that for a given species, every individual follows the same 1460 

height-diameter trajectory. While this is consistent with the fact most forestry surveys report basal diameter 

without height, this means that the models cannot represent site effects on maximum height, as well as the effects 

of competition for light on the height-diameter relationship. In reality dominated understory trees tend to allocate 

more carbon to height growth than diameter growth. Conversely, trees in low-density or thinned forests have 

greater diameter growth and slower height growth (Oliver and Larson, 1996). Furthermore, this sensitivity of 1465 

growth allocation to competition for light is more marked in shade-intolerant species (Delagrange et al., 2004).  

 

The effects of competition for light on growth allocation are crucial for understanding stand dynamics, as small 

initial differences in height tend to increase with time unless corrected by greater height growth. Forest managers 

have long known that tree maximum height varies from site to site with tree age and density (Fortin et al., 2019), 1470 

and forest growth models often use different height-diameter depending on site conditions (Mehtätalo, Miguel and 

Gregoire, 2015). Attempts to implement dynamic height growth in gap models have been shown to increase the 

realism of simulated stand structure, without reducing general applicability. For instance Rasche et al. (2012) have 

implemented such a dynamic height in the ForClim model on which ForCEEPS is originally inspired. Instead of 

the static relationship between diameter and height (ℎ), height increments are calculated at each time-step ∆𝐻 =1475 

	𝑓(	∆𝐷 through a function 𝑓(	that distributes growth between diameter and height growth according to a 

competition-for-light driven parameter 𝑠, which replaces the original fixed species-specific allometric parameter. 

Since the yearly diameter increment uses previous-year height in its calculation, its formulation also had to be 

adapted to account for the fact that height is dynamic and no longer directly calculated from diameter. These 

adaptations have been used in our modified ForCEEPS model, albeit with two important modifications.  1480 

 

Firstly, the parameters of the growth-distribution coefficient 𝑔! were adapted to be more conservative, and better 

reflect the species-specific relationship that had already been parametrized: 

 

𝑓J = 𝑠	 ×	n1 − I:!VW
IT<l,6:!VW

o																																																																																																															Eq. A1 1485 

 

𝑠 = 𝑠(6-4-3/, + (𝑘𝐿𝑎 ∗ 10) ∗ (1 − 𝐴𝐿I)																																																																																						 Eq. A2 

 

where 𝑘𝐿𝑎 is the species shade-tolerance, 𝐻 the tree height in centimeters, 𝐻"#$,! the maximum species height, 

and 𝐴𝐿m the light availability at the top of the tree crown. 1490 
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Secondly, we adapted the yearly growth equation. In the original formulation by Rasche et al. (2012), because 

yearly growth is calculated on the basis of total diameter at the start of the year, a tree that allocated more growth 

to height than to diameter due to competition in year n would have less total growth for year n+1 than a tree that 

had allocated more growth to diameter, all else being equal. This is a result of the simplifications of the ForClim 1495 

model, in which the diameter increment is calculated on the basis of previous year diameter instead of the previous 

year volume. This means tree biomass is only dependent on tree diameter, disregarding its height. This effect has 

major implications, as originally taller but thinner trees end up with smaller final height and diameters than in the 

original formulation. A possible solution would have been to replace trunk diameter by volume in the growth 

equations; but this would have meant reshaping the model from the ground up, and making it less applicable to 1500 

classic forestry datasets, as actual volume data are very rarely available. In the end, we adopted an ad-hoc solution 

by giving each tree two sets of heights and diameters : a static set (𝐷!)#)&4 and 𝐻!)#)&4), calculated from the old 

equations and static allometry relationships, that were only used as an ad-hoc proxy for real tree volume in the 

updated diameter increment equation (Eq. A3) and the calculation of slow-growth mortality (to avoid killing off 

trees that allocate too much growth to height); and a real set (𝐷 and 𝐻), using the updated equations and dynamic 1505 

allometry, that was used in all other cases including the light-competition module. 

∆*
∆(
= 𝑘𝐺 ∗ 𝐷)(S(bd ∗

o-.p!&K#K;+!"#$ qr

0∗2&K#K;+PcL∗*&K#K;+
																																																																					Eq. A3 

 
Appendix B: Crown-length reversion 
 1510 

The dynamic change of tree crown length was modified to better represent the feedbacks between stand structure 

and competition for light. In PHOREAU, light availability impacts growth directly and indirectly: directly through the shading 

growth reduction factor, and indirectly through the crown-length growth reduction factor, which represents long-

term crown shrinking due to shading. Individual tree crown lengths are calculated as the product of tree height, 

and a variable ratio that depends on species characteristics and tree status. This ratio changes according to the light 1515 

exposition of the tree, between two extreme species-specific values as described in Morin et al. (2021). In the 

original ForCEEPS framework, seedlings started with a crown ratio set at the species maximum, which then 

decreased over the tree’s lifetime with shading. In particular, this formulation assumes that the crown ratio can 

only ever decrease or stay the same from one year to the next, with no possibility of reversion when more light 

becomes available. 1520 

 
Therefore, we have implemented the possibility of crown ratio reversion in PHOREAU. A constantly decreasing 

crown ratio assumes no increase in light availability over a trees lifetime, disregarding the impact that the death or 

removal of one tree can have on its neighbours by enhancing light availability and leading to larger crown sizes 

and denser canopies (see Juchheim, 2020, and Saarinen et al., 2022). We have consequently adapted the original 1525 

ForCEEPS crown ratio equation to reflect this, with a yearly increase capped at 5% of the difference between the 

previous-year crown ratio, and the potential crown ratio given current light availability. We are aware this 

approximation does not take into account the fact that younger trees recover their crowns better due to having 

more remaining growth potential (Hynynen, 1995). 

 1530 
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Appendix C: Species-dependent crown shapes 
 
An accurate representation of crown shapes is an integral component to any model of light competition and canopy 

interactions between trees (Krůček et al., 2019). In reality the crown shape of any given tree is a complex 

combination of genetic, allometric, and environmental factors, as crown shape varies across species, age groups, 1535 

climate, local conditions and the shading status of the tree (Oliver and Larson, 1996). Canopy packing in mixed 

forests can be partly attributed to this heterogeneity and plasticity of crown shapes, as trees suffer relatively less 

competition for a given foliage density (Longuetaud et al., 2013). 

 

Crown-shape representation in PHOREAU iterates on the ForCEEPS framework, which already allowed for 1540 

stratified distributions of foliage area over a vertical axis (Morin et al., 2021). Compared to the previous iteration, 

PHOREAU allows trees to have other crown shapes than the default inverse-cone – such as conical or ellipsoidal 

shapes. This is meant to represent broad patrons in crown geometry observed at the European Scale, such as the 

fact species present in higher latitudes or latitudes tend to have more columnar or conical crowns to capture light 

coming from a perpendicular angle, whereas species as lower latitudes are more frequently flat-topped for 1545 

maximum exposure (Kuuluvainen and Pukkala, 1989).  

 

While the lack of explicit tree positions prevent PHOREAU from recreating the asymmetrical crown shapes which 

result from horizontal constraining between crowns (Niklaus et al., 2017), this simple approach allows for a more 

accurate representation of side-shading between trees, and captures the way shaded trees tend to become more 1550 

flat-topped as they reduce their crown height (Oliver and Larson, 1996), while saving some simulation time. See 

Figure 7 for a visualization of the new crown shapes. 

 
Appendix D: Density-dependent light availability 
 1555 

Any representation of forest canopies and light dispersion has to strike a balance between predictive power — 

how much photosynthetically active radiation (PAR) does a given tree actually receive at a given moment in time? 

— and computing cost: by aggregating leaves on a tree-by-tree basis and disregarding differences in angle and 

light absorption between sun and shade-leaves (Givnish, 1988), by calculating at yearly time-step, and by 

considering only the vertical stratification without an explicit representation of trunk distribution across space, 1560 

ForCEEPS is able to compute in a timely fashion what would otherwise take orders of magnitude longer with a 

more bottom-up approach from the leaf to the tree. 

 

PHOREAU does not diverge from this general framework, which is well suited to working on large-scale 

inventories (that usually come without tree-level coordinates), and does not suppose any a priori knowledge on 1565 

canopy composition. However, this simplification is not without its drawbacks. Because the light availability of a 

given canopy layer depends solely on the foliage area present in the layers above it, with no accounting for how 

this foliage is actually distributed, light competition is — in effect — boiled down to a single value: the LAI. 

Intuitively we understand that this does not quite tally with reality: two superposed leaves will intercept less light, 

all else being equal, than two leaves on a level plane; forests are not horizontally homogeneous, and gaps in the 1570 

canopy may form as trees die off, allowing saplings to sprout and grow even in dense stands (Nicotra, Chazdon 
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and Iriarte, 1999). Due to the links between patchy structures of light availability and tree species diversity and 

coexistence (Moora et al., 2007), measuring and quantifying microsite light availability has been a focus of 

research (Parent and Messier, 1996; Tymen et al., 2017), with important implications for forest management 

(Coates et al., 2003). 1575 

 

This structural limitation — which can be important, e.g. to accurately predict species richness in relation to 

management — can never be fully worked around. And, in keeping with the general philosophy of the model to 

strike a balance between complexity and genericity, we opted not to incorporate a complex 3D tree-level light 

absorption model (le Maire et al., 2013). However, in the transition from ForCEEPS to PHOREAU, some steps 1580 

have been taken to at least partially account for the horizontal stand structure. This was done in an indirect way by 

using information available to the model: the stand density. 

 

As in most gap-models, foliage area in ForCEEPS is translated into light availability using a modified logarithmic 

Beer-Lambert law, see Eq. D1, where light availability is a function of foliage area and a light extinction coefficient 1585 

𝜆. In the original formulation of the law this extinction coefficient is calculated by integrating over the path of the 

light ray the absorbance and density of the materials it crosses. This calculation — which accounts for the angle 

of the leaves, the angle of the sun’s rays, the different absorbances between species and sun and shade-leaves, and 

the distribution and clumping of the leaves and trees  (Smith, 1993; Dufrêne and Bréda, 1995) — is usually 

simplified into an empirical constant extinction parameter, which can vary from site to site (Vose et al., 1995; 1590 

Binkley et al., 2013). However, in the ForCEEPS framework, where stand composition is an emergent property 

and not an input, a single 𝜆 value is used regardless of site conditions. 

 

Following the methodology outlined in (Nilson, 1971; Black et al., 1991; Bréda, Soudan and Bergonzini), 

PHOREAU integrates a clumping factor Ω in its calculation of the light extinction coefficient. This clumping 1595 

factor ranges from 0 (corresponding to a fully concentrated distribution) to 1 (corresponding to a perfectly 

homogenous distribution), and represents the aggregation of leaves within each tree and between the trees 

themselves. The advantage of this approach is that Ω can be calculated each year as an emergent variable, allowing 

the model to capture observed trends like the inverse relation between LAI and the light extinction coefficient 

(each additional increment of leaf area blocks marginally less light) (Dufrêne and Bréda, 1995). The clumping 1600 

factor in PHOREAU is calculated using Curtis relative density (Smith, 1993; Curtis, 1982): with this formulation 

(see Eq. D2) for a given LAI, a dense stand with small trees will block out more light than a stand populated by a 

few large trees. This approach is similar to the one used in LAI estimation with MODIS or hemispherical 

photography, where clumping indices are also used to correct the raw measured LAI (Demarez et al., 2008; Chen 

et al., 2012; Zhu et al., 2018).  1605 

 

A further step would be to incorporate species-specific absorbance values , as leaves of different species react 

differently to incoming light (Binkley et al., 2013), but this would necessitate gathering data at the species level 

(data which is, to our knowledge, available only for a select few species). Another possible refinement would be 

to incorporate the angle of incoming light in the calculation of light availability (Smith, 1980); but this would 1610 

require modifying the light competition calculation to consider  site effects related to slope and exposition. 
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𝐿𝑖𝑔ℎ𝑡	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦- =	𝑒:;∗
∑ (Y(,-/4%U6%/n)f
nop[^ 																																																																									Eq. D1 

𝜆 = 0.25 ∗ 	 T/&/,U6%/∑ (ATIn
>)q

no^
																																																																																																																						Eq. D2 

 1615 

 
Appendix E: Incorporation of Specific Leaf Area 
 
The relation between trunk diameter, crown biomass, and foliage area in ForCEEPS are governed by a set of 

simple allometric relationships calibrated for a few of the main  temperate European species, using experimental 1620 

data collected in Switzerland by destructive sampling in the 1940s and 50s (Burger, 1951; Bugmann, 1996). The 

refinements that ForCEEPS implemented regarding crown plasticity and explicit vertical stratification were built 

upon this foundation but did not challenge its underlying assumptions (Morin et al., 2021). This became 

problematic as the model — and PHOREAU in particular — incorporated more species from a larger geographic 

range: understory or Mediterranean species in particular that were not represented in the initial calibration dataset. 1625 

This was directly reflected in model predictions, for example with an overestimation of Quercus ilex or Pinus 

halepensis mortality due to inflated foliage areas. 

 

A simple solution to this issue was implemented by recalculating the 𝑐N parameter (used in ForCEEPS to derive a 

tree’s foliage area from its diameter) using a specific leaf area (SLA) value for each species. The retained SLA — 1630 

the surface area for a given mass of  leaves — are those of average adult individuals of each species over a large 

set of sites (Kattge et al., 2020; Devresse et al., 2024). This new formulation (see Eq. 17) allows the model to 

capture inter-specific differences in drought resistance strategies (Greenwood et al., 2017), while disregarding for 

the moment SLA plasticity to tree age, competition, and site conditions (Gratani, 2014).    

 1635 

Appendix F: Microclimate derived from stand-structure 
 
By integrating fine hydraulic and phenological mechanisms in the overall framework of a forest-structure gap 

model, PHOREAU has the opportunity to capture the effects of microclimate on plant functioning. Because forest 

canopies absorb or reflect the majority of incoming solar radiation, reduce wind speeds, convert solar energy into 1640 

latent heat through evapotranspiration, and block outgoing infrared radiation, climatic conditions in the understory 

are often buffered compared to those at the top of the canopy, with cooler more stable temperatures during the 

day, and warmer temperatures during cold nights. This climate dampening effect is more marked for temperature 

extremes, and for tall, structurally complex dense canopies (De Frenne et al., 2021). Furthermore, it is an important 

factor in ability of young, understory trees to resist droughts despite their shallow root systems (Forrester and 1645 

Bauhus, 2016). Because PHOREAU evaluates drought-stress at an individual level by calculating tree fluxes, it 

can easily make use of microclimatic data for temperature, air humidity, and light availability, to better compute 

plant evapotranspiration and in turn differentiate water stress among individuals of different heights. In addition, 

because PHOREAU simulates many small patches each sharing a soil and a canopy height profile, the 

incorporation of microclimate could help the model capture forest landscape mosaic dynamics, where forests with 1650 

n: total number of layers ; i: layer rank ; N: number of trees 
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heterogeneous patches are able to host more diversity due to differentiated microclimatic effects on regeneration 

and drought (Pincebourde et al., 2016).  

 

To derive microclimate temperature and air humidity from macroclimate, we implemented a version of the 

statistical model developed, calibrated and validated in Gril et al., (2023) and Gril, Laslier, et al., (2023). This 1655 

model, which has the advantage of using only easily available patch characteristics, uses a simple slope and 

equilibrium approach, presented in Figure S1, to compute microclimate temperature at soil level (𝑇3) from the 

corresponding hourly or daily macroclimate temperature (𝑇c). The slope (𝑚!%,1d)	captures the linear relationship 

between microclimate and macroclimate, while the equilibrium is the point at which microclimate is equal to 

macroclimate (Eq. F3). In our case, month mean temperature (𝑇") is used as the equilibrium. The slope, which 1660 

acts as a buffer if is lower than 1, is computed daily using patch-level leaf area index (𝐿𝐴𝐼), maximum tree height 

(ℎ"#$), and vertical complexity index (𝑉𝐶𝐼), as seen in Eq. F4 with corresponding coefficients calibrated over a 

large dataset of microclimate measurements (Gril, Laslier, et al., 2023). VCI is obtained following Van Ewijk, 

Treitz and Scott, (2011) by calculating the weighted logarithmic average of foliage area proportion per patch 

canopy layer (𝑝&), normalized by the total number of layers 𝑛, as shown in Eq. F5 and Eq. F6. Finally, for any 1665 

given tree height ℎ, the corresponding microclimate temperature 𝑇(
c is derived from soil microclimate and 

macroclimate using a linear interpolation, as shown in Eq. F1 and Eq. F2.   

 

 
𝑇J
E = 𝑇"

E + (1 − (𝑤(ℎ)) × 0𝑇E − 𝑇"
E4																																																																																											Eq. F1 1670 

𝑤(ℎ) = (JT<l:J)
JT<l

																																																																																																																																	Eq. F2 

𝑇"
E = 𝑇E 	× 	𝑚&,(N% + 𝑇) × 01 −𝑚&,(N%4																																																																																			Eq. F3 

𝑚&,(N% =	𝑒=".VZ	:"."\.?UH
n:".D.]@Hn:"."W.JT<lB																																																																																							Eq. F4 

𝑉𝐶𝐼E = − ∑ Np,3	(Np)
f
po^
,3	(3)

																																																																																																																								Eq. F5 

𝑝- =
Y(,-/4%U6%/7<S:r	p

∑ Y(,-/4%U6%/7<S:r	pf
p

																																																																																																																				Eq. F6 1675 

 

 
 
 
Calculated hourly microclimate temperatures are then used to compute corrected local vapor pressure deficits 1680 

(VPD) used in PHOREAU transpiration computations. These temperatures are also used in GDD calculations (see 

Eq. 26), as well as for seedling establishment constraints based on minimal temperatures (𝑊s"&.). For seedlings, 

soil-level microclimate temperature is directly used; for established trees, the microclimate temperature is 

calculated the weighted average height of their foliage area distribution. 

 1685 

j : day or hour ; 𝑚: month  ;  𝑖 : canopy 
layer; n : number of canopy layers 
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Because leaf unfolding and senescence dates are integrated in the calculations of 𝐿𝐴𝐼 and 𝑉𝐶𝐼, the slope of 

microclimate buffering or amplification can change throughout the year. 

 

While this approach presents a number of advantages, it comes with major simplifications. The most important 

one is certainly the linear interpolation of microclimate over the height of the stand, which neglects actual wind 1690 

movement and radiation attenuation dynamics. Microclimatic data, measured at different heights below the 

canopy, would be needed to calibrate a more realistic non-linear function. Other simplifications include 

disregarding the effect of soil moisture, ignoring horizontal heterogeneity within patches, and assuming monthly 

mean temperatures are a good indicator of equilibrium.  

 1695 

 
 
 
Appendix G: Treewise aggregation 
 1700 

Because the runtime of a SurEau simulation is driven by the number of distinct water-holding compartments — 

the atmosphere, soil layers, and mostly importantly tree organs — the first step to reducing the runtime of a SurEau 

simulation is to reduce the number of initial trees. This approach requires that the global stem volumes and foliage 

areas remain the same at the stand level, as these are the main drivers of water-use in SurEau and in natura 

(Wullschleger, Meinzer and Vertessy, 1998). The aggregation method ensures this through by summing and 1705 

averaging, at the cost of some precision in the description of the competition for water. 

 

The degree of simplification is specified at the start of the PHOREAU simulation by choosing a number of classes: 

this is the maximum number of aggregate trees created per species at the start for each SurEau run-year. It follows 

that, for example, a three-class aggregation in a stand with 4 species will result in SurEau initializing with at most 1710 

12 trees, which is a more manageable number. To preserve the overall structure of the stand, trees are distributed 

within classes on the basis of trunk diameter: for an n-class aggregation, for each species, the range of diameters 

between 7.5 cm and the largest diameter at breast height is decomposed between   𝑛 − 1 segments of same size: 

classes are then created by grouping all the trees with a diameter at breast height located between the extremities 

Figure F1 | Schematic representation of the slope and equilibrium microclimate approach, 
reprinted from Gril, Laslier, et al., (2023). 
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of a given segment, and the last class is composed of all the juvenile trees smaller than 7.5 cm. A consequence of 1715 

this method is that a class may contain no tree for a given year, and that trees may move between classes from one 

year to the next as they grow in size.  

 

After the distribution, a single aggregated tree is created for each class. The volume of this aggregate tree is the 

sum of the volumes of all the trees in the class; its height the average of their heights; its foliage area the sum of 1720 

their foliage areas; its root depth the average of their root depths; its root biomass the sum of their root biomasses; 

and finally its light availability the average of their light availabilities. See Figure 5 for an example case. 

 
Appendix H: Dry-year selection  
 1725 

The second optional way of optimizing PHOREAU performance revolves around modifying the rate at which 

SurEau is called from ForCEEPS. By default, the two submodels are run on a 1-to-1 basis, with SurEau being 

called at the beginning of each year; but a more parsimonious approach is to run SurEau only for the driest years 

of the simulation. This simplification is based on the idea that the impact of drought on forested stands, and 

especially on tree mortality, does not follow a linear curve, but rather depends on climate extremes, physiological 1730 

thresholds and tipping points (Hartmann et al., 2018). Because this approach requires a prerequisite ranking of all 

of the years of the simulation according to their dryness, we use an integrative Drought Index calculated for each 

year (Morin et al., 2021). The rate of SurEau calls — every two years, five years, etc., — is set by the user before 

the start of the simulation, with a trade-off between runtime and the accuracy of drought-response predictions. At 

the start of the simulation, the driest year among the first 𝑛 years is selected as the year SurEau will be called; 1735 

then, at the start of the 𝑛 + 1 year, the driest year among the next 𝑛 years is selected, and so on. 

 
Appendix I: Drought feedback on growth 
 
In assessing the effects of drought events on trees, PHOREAU distinguishes between short-term adaptations and 1740 

long-term non-reversible consequences — respectively feedbacks on growth and on mortality. The independence 

of these two mechanisms is key to avoiding confusion between two sources of mortality: that caused by long-term 

carbon starvation — represented in PHOREAU by diameter growth falling under a certain threshold — and that 

caused directly by extreme  drought through high level of xylem embolism leading to hydraulic failure (Cochard 

et al., 2021b). A tree subjected to consecutive years of water stress may maintain its conductive vessels but die off 1745 

due to a lack of carbon intake and defoliation; another may die following a single month of acute water stress 

despite strong carbon reserves. By establishing a clear distinction between these two pathways, PHOREAU is able 

to account for the different drought response strategies observed among species. 

 
In PHOREAU, the impact of drought on growth is assessed using the degree of stomatal closure, converted into a 1750 

drought index 𝐷𝑟𝐼. Compared to the original ForCEEPS formulation which uses a simple monthly water budget 

(Bugmann and Solomon, 2000), this new mechanism takes advantage of the detailed hydraulic framework of 

SurEAU to account for competition for water as well as inter-specific differences in dealing with water-stress. For 

seedling establishment — for which SurEAU cannot be used — the original drought index 𝐷𝑟𝐼 remains used as a 

proxy for global stand water availability. 1755 

https://doi.org/10.5194/egusphere-2025-2110
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 59 

 

Schematically, as soil water reserves become depleted and soil water potential decreases, trees adapt their 

conductance by closing off stomata in order to reduce water loss and maintain twig and leaf potentials above 

cavitation thresholds (Cochard, Bréda and Granier, 1996; Cochard et al., 2002). This regulation mechanism 

prevents the premature death of branches and trees due to uncontrolled embolisms, as trees reduce their water loss 1760 

until only cuticular transpiration remains. The relation between leaf water potential and stomatal closure is an 

important trait describing a species’ response to drought: constrained by a trade-off between carbon gain and risk 

of hydraulic failure (Brodribb et al., 2003; Venturas et al., 2018), it is correlated with the more often measured 

turgor loss point (TLP) (Brodribb and Holbrook, 2003). While the link between turgor loss and reduced growth is 

well-documented (Cabon et al., 2019; Peters et al., 2020; Potkay et al., 2022), for PHOREAU stomatal aperture 1765 

was selected as a continuous variable allowing for a finer feedback. 

 

Stomatal aperture 𝛾 in PHOREAU is derived at each time-step from leaf water potential 𝑃J,!L"	using a sigmoid 

curve described by two species-specific traits: 𝑃'!MN the water potential causing 12% stomatal closure, and 𝑃'!OO 

the water potential causing 88% stomatal closure (Cochard et al., 2021b). Actual stomatal conductance is then 1770 

calculated as the product between this stomatal aperture ratio and a maximal stomatal conductance value for a 

given climate. To calculate the drought reduction index 𝐷𝑟𝐼 of a given tree, daily stomatal apertures ratios 𝛾c are 

averaged over the photosynthetic period, which are then averaged over the year (Eq. 13).  

 

Appendix J: Drought feedback on defoliation 1775 

Between the normal closing and opening of stomata to regulate water flow, and the runaway embolisms 

responsible for tree mortality after prolonged extreme droughts, trees exhibit a range of intermediate responses to 

water stress. Among these regulatory mechanisms, the adaptation of leaf area to moderate water stress is of 

particular importance for any model, such as PHOREAU, which integrates tree growth and drought-resistance.    

Water limitation impacts leaf area through three main pathways: the premature shedding of leaves, the disruption 1780 

of new bud formation (Bréda et al., 2006), and plastic biomass allocation to leaves (Martínez-Vilalta, Sala and 

Piñol, 2004). These mechanisms function at gradually longer time-frames: a cohort of trees may shed their leaves 

one year in response to extreme drought, and recover their full canopy the next; another may experience several 

years of decreased leaf area while its leaf phenology cycle is disturbed; and yet another cohort may have 

permanently shifted to produce less leaf area to adapt to chronic soil water limitations (Limousin et al., 2012; 1785 

Martin-StPaul et al., 2013). This graduated temporal response is complicated by the fact it is differentially applied 

among species, following the classic split between drought-avoidance and drought-resistance strategies: indeed, 

there is evidence that while the reduction of leaf area improves resistance to moderate drought events, it may not 

avail against severe water stress (Limousin et al., 2022). Furthermore, the short-term gain in drought-resistance of 

a reduced photosynthetic surface may eventually offset by the negatives consequences of reduced carbon uptake 1790 

(Poyatos et al., 2013), and the link between leaf area and a reduction of fine root biomass (Gieger and Thomas, 

2002).   
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While the integration of defoliation has been shown to improve the predictions of tree mortality models (Dobbertin 

and Brang, 2001), this integration is complicated by the fact that few are able to account for the dual role of leaves 

in carbon-assimilation and water-use. However, unlike most mortality models, the PHOREAU model has the 1795 

major advantage of being able to disentangle the contradictory effects of leaf area on growth and drought 

resistance, and of having an explicit representation of the root compartment with water uptake driven by fine roots 

and ultimately leaf area (see Sect. 3.2.7).  

Appendix K: Drought feedback on mortality 
 1800 

Drought-induced mortality in PHOREAU is derived from the percentage of cavitation, i.e. the percentage of loss 

of conductance (PLC). This mortality mechanism is entirely distinct from the pre-existing slow-growth mortality 

in ForCEEPS, and the previously described drought feedback on growth. Indeed, contrary to the slow-growth 

mortality that reflects carbon starvation and the long-term integrative effects of dehydration coupled with 

temperatures and competition for light on the capacity of trees to grow and survive (Bugmann and Solomon, 2000), 1805 

this feedback is only intended to capture catastrophic water failure caused by extreme drought events, irrespective 

of the overall prior health of the tree. Unlike the stomatal closure used in drought feedback on growth, the 

cavitation of a tree’s hydraulic system is neither quickly reversible, nor does it follow a linear response to hydraulic 

stress. Furthermore, it occurs only after the stomata have been closed, when, under extreme stress conditions, 

residual water flow through the cuticle empties the plant’s water reservoirs. As water is drained from the soil and 1810 

the water potential of the system becomes more and more negative, the conductance of a tree’s hydraulic system 

may remain stable until a certain point is reached, when it rapidly decreases as the xylem vessels are embolized 

and air are formed (Tyree and Sperry, 1989). This non-linear, tipping point response of conductance loss to 

decreasing water potentials is described by the vulnerability curve of the species. This curve, in the shape of an 

inverse sigmoid function, is described for each species using a 𝑃23 parameter. This parameter, responsible for the 1815 

main differences in drought-resistance between species (Delzon and Cochard, 2014), is the water potential causing 

50% cavitation in the xylem (Cochard et al., 2021b).  

 
Appendix L: The rain interception module 
 1820 
Capitalizing on the capacity of PHOREAU to predict individual-tree daily foliage area values that integrate 

allometry, competition, frost, phenology, and drought-defoliation effects, we implement a rain interception module 

that reduces incoming rain based on the daily leaf area of the stand. Modelling rainfall interception — defined as 

free water that evaporates from the leaves and barks of trees after a rain event  — is an important component for 

any model trying to water cycles and tree water balance (Granier et al., 1999; Davi et al., 2005a). The intensity of 1825 

the interception has been shown to grow linearly with leaf area, for values ranging from 20% to 35% of cumulated 

rainfall in temperate and continental climates (Bréda et al., 2006). While secondary factors such as irradiance, 

windspeed, and vapor pressure deficit impact the rate of interception in natura, as a first approach we have chosen 

a simple implementation, inspired from Medfate (De Cáceres et al., 2023b), based solely on daily leaf area, rain 

volume, and potential evapotranspiration.  1830 

 

A canopy storage volume is derived from the foliage area of the stand. This volume is incremented at a daily time-

step with incoming rainfall, and outgoing evaporated water. For a given volume of incoming rainfall, the 
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throughfall, or the volume of water to reach the ground, is calculated with a simplified Beer-Lambert formula, in 

a similar fashion to the way light extinction is computed. Because the canopy storage volume is itself limited, any 1835 

intercepted water that overflows this maximal quantity flows down the soil; a natural consequence of this property 

is that a given volume of given rainfall will yield a greater cumulated throughfall when concentrated in a single 

day, than when distributed over several days with intervening evaporation. The algorithm, presented below in Eq. 

L1, computes the daily stand-wide throughfall volumes that then serve as inputs to the water balance model. 

 1840 

 

𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦E =
𝐿𝐴𝐼E
2  

𝑃𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙E = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙E ∗ 01 − 𝑒:".M	∗	?UHn	4																																														  Eq. L1 

𝑃𝑜𝑡𝑇ℎ𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙E = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙E ∗ (𝑒:".M	∗	?UHn	) 

𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒E =	𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦E − 𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑐𝑘E:! 1845 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙c = z
𝑃𝑜𝑡𝑇ℎ𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙c

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙c −	𝐴𝑣𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒c)
~
	𝑃𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙c ≤	𝐴𝑣𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒c 	
𝑃𝑜𝑡𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙c >	𝐴𝑣𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒c

 

𝑆𝑡𝑜𝑟𝑒𝑑𝑊𝑎𝑡𝑒𝑟E =	𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙E −	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑓𝑎𝑙𝑙E 

𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑐𝑘E = 𝑀𝑎𝑥(0, 𝐶𝑎𝑛𝑜𝑝𝑦𝑆𝑡𝑜𝑐𝑘E:! + 𝑆𝑡𝑜𝑟𝑒𝑑𝑊𝑎𝑡𝑒𝑟E − 𝑃𝐸𝑇E) 

 

 1850 

 
Appendix M: The bootstrap algorithm 
 
 In the PHOREAU framework, the leaf area is updated at the end of the year, after each tree’s crown length has 

been updated according to the light availability. However, the light availability that is used to calculate the new 1855 

crown lengths is the result of the stand area of the previous year, which is itself the result of the previous year’s 

crown lengths. This asynchronicity means that – disregarding other processes like growth regeneration and 

mortality – the estimation of stand area will oscillate around an equilibrium state. While this equilibrium state is 

dynamically stable, the oscillations for the first few years are large enough to be significant. This is especially 

problematic when starting the model from an inventory: because actual crown lengths are rarely available, the 1860 

model is forced to initiate the crown at the maximum species’ value; the resulting very low light availability means 

that the following year the crown lengths will be reduced by a large factor, which means that more light will be 

available the year after that, causing a new spike in stand leaf area. It is to correct for this effect that we 

implemented a bootstrap algorithm where, before the first year of the simulation, multiple iterations of the light 

competition module are run until the shift in stand area between two successive iterations becomes negligible 1865 

 

j : day of year 
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Figure M1 | Illustration of PHOREAU canopy bootstrap algorithm. Top: one-sided leaf area indices 
predicted by the PHOREAU bootstrap algorithm, initialized with a Picea abies dominated inventory 
(RENECOFOR EPC 39a, 2003). Bottom: three snapshots of predicted foliage area and light availability 
vertical stratification at different steps in the algorithm. For details on the calculation of the Vertical 
Complexity Index (VCI), refer to Appendix F. 

b a 
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Appendix N: The Integrated Carbon Observation System 
 1885 
The Integrated Carbon Observation System is a network of stations that measure ecosystem-atmosphere exchanges 

of greenhouse gases and energy at a high frequency (Baldocchi, 2003), using the eddy-covariance technique. In 

addition, a large set of ancillary variables needed for the interpretation of the flux data are also measured: for forest 

stations these include, among other measures, tree inventories, leaf area index, and soil data — all of which can 

be leveraged for our modelling purposes (Gielen et al., 2018). The large scope of measured variables in ICOS 1890 

framework makes any validation based on it easily scalable, and will in the future allow testing of any newly 

integrated PHOREAU processes (such as carbon retention or vertical micro-climate interpolation). Finally, a set 

of rigorous specifications for the installation of the eddy-covariance tower sensors, and a common pipeline for the 

post-processing of the raw data through the Ecosystem Thematic Centre (ETC), ensure the high level of 

comparability between sites that is necessary for large-scale model evaluation. 1895 

 
Appendix O: Puéchabon  
 
The Puéchabon experimental site (43°44’30”N, 3°35’40”E, altitude 270 m) is located in a forest of holm oak 

located in the South of France near Montpellier. With its last clear cut in 1942, and managed as a coppice for 1900 

centuries before that, the site is characterized by a high density (5000-7000 trees/ha) of small (5.5 meter high 

overstorey) Quercus ilex trees: they make up an old forest with a  basal area of 30 m2/ha,  (Rambal et al., 2014), 

and an LAI around 2.2 with little seasonal variability.  Located on a flat area, with a rocky soil of Jurassic limestone 

filled with clay, its small water reserve (roughly 130 mm of water over the 5 meter profile) and typically 

Mediterranean precipitation pattern (highly variable from year-to-year, with a measured range of 550 to 1550 mm 1905 

primarily concentrated between September and April) made it an ideal candidate to study the long-term effects of 

drought.  

 

Within the framework of the Mediterranean Terrestrial Ecosystems and Increasing Drought (MIND) project, the 

diameter of trees contained in twelve 100m2 plots have been measured on a  year-to-year basis since 2003: these 1910 

are distributed between three control plots, three thinned plots (33% reduction of basal area), three plots with 

partial rainfall exclusion (33% throughfall), and three thinned and rainfall excluded plots (Gavinet, J.-M. Ourcival 

and Limousin, 2019). We have used these plots to run simulations from 2003 to 2020, and assess how the 

PHOREAU model simulates the effects of tree density on drought resistance.  

 1915 
Appendix P: Font Blanche  
 
The Font Blanche experimental site (5°40’45’’E, 43°14’27’’N, altitude: 420 m) is located in a mixed-forest of 

Aleppo pine and holm oak, with an overstorey of Pinus halepensis (13.5 m height) that dominates a coppice of 

Quercus ilex (6.5 m height). With a basal area of 21.3 m2/ha and and LAI ranging between 2.5 and 2.7 it is less 1920 

dense than Puéchabon, but otherwise boasts a broadly similar soil and meteorological profile (Simioni, Marie and 

Huc, 2016). For our validation we used the 625m2 control plot (PM30) of the rainfall exclusion experiment, in 

addition to the main plot of 6400m2 that we split between 25 smaller splots of 267 m2 apiece to satisfy PHOREAU 

homogenous competition assumptions. Our timeframe for this site ranges from 2007 to 2020. 

 1925 
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Appendix Q: Hesse 
 
The Hesse Experimental site (7°3’59’’E, 48°40’30’’N, altitude: 300 m) is located in a beech (Fagus sylvatica) 

stand in north-eastern France, on a plain at the feet of the Vosges mountains. Average tree height was measured 1930 

at 16.2 m in 2005, with a maximum leaf area index over 7.5 indicating a very high level of canopy closure. In 

comparison to the two previous sites it is characterized by a wetter, semi-continental temperate climate, with a 

deep loam-clay soil  (Davi et al., 2005a; Dufrene et al., 2005). Unlike most sites in the ICOS network it is fertile, 

fast-growing and subjected to frequent thinnings, with an average tree age of only roughly 40 years in 2005, 

allowing us to test the capability of PHOREAU to simulate canopy and basal area regrowth after a cut. 1935 

Furthermore, despite the stand having high rainfall and soil high water holding capacity, droughts events are 

responsible for most of the interannual variability in tree growth (Granier et al., 2008). We extracted from the 

inventory four evenly sized 300 m2 plots. Because the validation timeframe ranges from 1999 to 2010  when the 

most data was available (Cuntz et al., 2023e, 2023d, 2023c, 2023b, 2023a) ; ; Betsch et al., 2011; Peiffer et al., 

2014; Tuzet et al., 2017; Zapater, 2018), our model also replicates two thinnings that occurred in 2004 and 2009, 1940 

respectively for 25 and 15% of the basal area. 

 
Appendix R: Barbeau 
 
The Barbeau experimental site (2°46’E, 48°28’N, altitude: 100 m) is located in the Fontainebleau national forest 1945 

southwest of Paris. The stand is dominated by sessile oak (Quercus petraea) trees that 25 m at 100 years of age, 

with an understory of hornbeam (Carpinus betulus). Mean annual cumulated precipitations of 677 mm are evenly 

distributed over the year, and feed into a deep soil with roots able to reach at least 150 cm in depth. We initialized 

our validation over 9 plots of 1000 m2 using an exhaustive inventory made in the winter of 2006-2007; we ran 

running it until 2021, including a thinning in 2011 (Delpierre et al., 2016; Maysonnave et al., 2022). Unlike the 1950 

other studied sites, growth data was not available on a tree by tree basis, but instead aggregated at the stand level 

(Briere et al., 2021). 

 

Appendix S: Supplementary Tables 

 1955 

Tables S1 to S17 are available in the supplements published alongside this article. 

 
Appendix T: Climate Reconstruction  
 
The SILVAE web portal (Bertrand et al., 2011 and Richard, 2011) offers monthly average temperature and 1960 

precipitation sum data over France at a finer spatial resolution, accounting for microclimatic differences caused 

by differences in altitude, exposition, and wind orientation. These time-series, available for the period between 

2000 and 2014, were used to correct the coarser ERA-5 Land dataset for all variables except wind-speed: either 

by direct mean-adjustment for the average temperature and precipitation variables, or after a prior linear regression 

of the variable over the mean temperature for the given month of the ERA-5 Land time-series. For the average 1965 

temperature variable, between 2000 and 2014, daily values were corrected by the difference between the average 

of all the daily ERA-5 Land values for that month and the single monthly value of the SILVAE correction dataset; 

whereas for the years outside of this range where the corresponding monthly value was not available, the difference 
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was calculated using the mean of all values for the given month between 2000 and 2014. A similar method was 

used for the precipitation variable, where the daily values were multiplied by the ratio between summed monthly 1970 

ERA-5 precipitations, and the single monthly SILVAE value. For the other variables except wind speed the same 

method was used as for the average daily temperature, except the addition factor was itself first multiplied by the 

slope of the regression between the temperature and the variable. The wind speed variable was not corrected due 

to its weak correlation to mean temperature. The workflow for climate reconstruction is summarized in Figure 8. 

 1975 

Appendix U: Evaluation against leaf area  
 
The importance given to competition for light and leaf area prediction is one of the core principles of ForCEEPS 

— and the FORCLIM and FORECE models before it. However, because the initial models were focused on long-

term forest dynamics, the methodology used to calibrate and validate the light competition module was based on 1980 

a broad adequation between expected LAI values, and those reconstructed by the model after runs of hundreds or 

thousands of years starting from the bare ground (Kienast, 1987). Even then, LAI was not usually considered in 

the final validation, which was made on predicted biomass, basal area, tree density, or species composition 

(Bugmann, 1996; Wehrli et al., 2006). Notwithstanding the fact that this approach disregards past human 

interventions in the observed stands, it only accounts for equilibrium states, which becomes problematic when one 1985 

wishes to apply the model at shorter timescales and consider the shorter-term effects of climate-change on existing 

forests. Yet, while ForCEEPS did use actual inventories and short-term productivity for its original evaluation 

(Morin et al., 2021), its performance was not assessed by comparing simulated and observed predicted leaf area 

index values. 

 1990 

This approach holds up as long as leaf area can be considered to be an intermediary variable. Because the previous 

models only used leaf area within the framework of their light competition modules, a given tree’s predicted leaf 

area only mattered insomuch as it provided shadow to neighboring smaller trees, decreasing their light availability 

factor. In this respect, absolute leaf area mattered less than the relative distribution between trees and species, 

which governed growth and final predicted compositions.  1995 

 

However, in PHOREAU, tree leaf area is also an integral input of another part of the model: the simulation of 

hydraulic processes. This is because the upwards flow of water through the tree is ultimately driven by the 

transpiration in the leaves (Ruffault et al., 2022). And, in this respect, water flow is driven not by the relative, but 

by the absolute quantity of leaf area. Mechanically, a stand with a greater total leaf area index will tend to exhaust 2000 

its water reserves faster; and tree leaf area, in ecosystems subjected to drought, is directly modulated by recent 

drought events (Bréda et al., 2006). These mechanisms, which are implemented in PHOREAU, require an accurate 

prediction of yearly stand leaf area index as a prerequisite condition to any simulation of hydraulic stress.  

 

Unlike other validations of SurEau (Ruffault et al., 2023), the PHOREAU framework prevents the direct use of 2005 

leaf area index as an input to the model; instead, the model initializes the stand LAI using solely the diameter and 

height information contained in the initial inventory. This makes the model suited to work on a majority of sites, 

where trunk diameters are measured but not leaf area, and allows it to make predictions in the future, as the LAI 

is recalculated on a year-to-year basis. The drawback of this approach is the addition of a new source of error when 
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LAI is wrongly estimated. This is why, before validating the model on growth or drought-induced mortality, a 2010 

preliminary validation of the leaf area index predictions was necessary.   
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Appendix V: Height-Diameter Interpolation 
 
 
Height-diameter ratio interpolation. In order to leverage PHOREAU’s ability to reproduce stand light availability 2015 

and microclimatic conditions based on the 

structure of modelled trees, we used the 

newly independent tree height variable (see 

Sect. 3.1.2) as an input parameter. However, 

height measurements were only available for 2020 

a subset of trees across all RENECOFR and 

ICP II plots. Therefore, for trees where only 

circumference was measured, we applied 

plot-specific LOESS local regressions 

(Cleveland and Loader, 1996) to estimate 2025 

species height-to-diameter curves from 

available measurements. The variability in 

height-to-diameter relationships among 

plots can be seen in Fig. U1 and Fig. S20, 

contrasted with the fixed height-to-diameter formula used in the original ForCEEPS framework. The associated 2030 

statistics presented in Table S3 highlight the general tendency of the formula to underestimate tree heights in our 

study sites (AB = –15.7%; Table S3); this is not necessarily surprising, as the RENECOFOR and ICP II sites 

mostly support denser, more productive stands, where trees prioritize height growth to compete for sunlight. 
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Figure U1 | Diversity of site height-to-diameter curves for 
Fagus sylvatica. Refer to Table S3 for details. 
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Appendix W: Supplementary evaluation figures 2035 
 
 

 
  Figure W1 | Predicted distribution of stand leaf area and light availability. This figure illustrates the 

vertical gradient of predicted light availability indices of the four considered ICOS sites for specific simulation 
years. The light availability is presented over the aboveground profile, divided into 0.1 m layers. In addition, 
the area of each shape in the layers represents the predicted aggregate leaf area. Refer to Fig. 5 for light 
availability index gradient. The figure also includes global annual stand parameters LAI and VCI (see 
Appendix F of VCI). 
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 2040 
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Figure W2 | Predicted fine root area distribution over the soil profile. For the four ICOS validation sites, 
for certain simulation years a partial vertical soil profile is shown, with the overall dryness of each soil layer 
depicted as a gradient using its 10th quantile relative extractable water (REW) percentage. For each species 
and size class aggregate tree (refer to Appendix G for details on the aggregation method), the distribution of 
the inverse cone along the soil layers represents the predicted location of its fine roots, with its total aggregate 
fine root area index (FRAI) shown under. Refer to Fig. W3 for species and cohort color codes. 
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Fig. X | Predicted versus observed
evolution of annual stand basal area.
For each simulation site, the bars depict
the annual basal area projections
generated by the PHOREAU model,
broken down by species and size class
contributions (refer to Annex X for
details). The dashed line represents the
observed annual total basal area
derived from inventory data. Basal area
is defined as the cross-sectional area at
breast height of all trees per hectare.
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Figure W3 | Predicted versus observed evolution of 
annual stand basal area. For each simulation site, the bars 
depict the annual basal area projections generated by the 
PHOREAU model, broken down by species and size class 
contributions (refer to Table S15 for associated statistics). 
The dashed line represents the observed annual total basal 
area derived from inventory data. Basal area is defined as 
the cross-sectional area at breast height of all trees per 
hectare. 
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 2045 
  

Figure W4 | Predicted versus observed annual stand leaf area index (LAI). For each simulation site, the 
bars depict the annual leaf area index projections generated by the PHOREAU model, broken down by species 
and size class contributions (refer to Table S16 for associated statistics). The dashed line represents the 
observed annual stand leaf area index (data sources are detailed in Table 1). Leaf area index is defined as the 
total one-sided leaf area per unit of ground area. Refer to Fig. W3 for species and cohort color codes. 
 

Fig. X | Predicted versus observed
annual stand leaf area index (LAI). For
each simulation site, the bars depict the
annual leaf area index projections
generated by the PHOREAU model,
broken down by species and size class
contributions (refer to Annex X for
details). The dashed line represents the
observed annual stand leaf area index
(data sources detailed in Annex X). Leaf
area index is defined as the total one-
sided leaf area per unit of ground area.
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Figure W5 | Predicted versus observed evolution annual stand basal area loss due to mortality. For each 
simulation site, the bars depict the summed annual total basal area (m2/ha) of all dead trees, broken down by 
species and size class). Observed values are derived from stand inventories, while predicted values are generated 
by the PHOREAU model. Also shown are the yearly basal area loss rates, calculated relative to the initial basal 
area for two distinct time periods in each simulation, along with the total basal area dieback per hectare (Gdead). 
Transparent bars indicate years with thinnings (see Appendices Q and R for details), which are excluded from 
the mortality statistics. Refer to Fig. W3 for species and cohort color codes. 
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Fig. X | Predicted versus observed
evolution annual stand basal area
loss due to mortality. For each
simulation site, the bars depict the
summed annual total basal area (m2/ha)
of all dead trees, broken down by
species and size class (refer to Annex X
for details). Observed values are
derived from stand inventories, while
predicted values are generated by the
PHOREAU model. Also shown are the
yearly basal area loss rates, calculated
relative to the initial basal area for two
distinct time periods in each simulation,
along with the total basal area dieback
per hectare (Gdead). Transparent bars
indicate years with thinnings (see Annex
X for details), which are excluded from
the the mortality statistics.

https://doi.org/10.5194/egusphere-2025-2110
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 73 

  Figure W6 | Predicted versus observed daily real evapotranspiration (ETR). For each simulation site, the 
plain blue line is the regression line of the linear model of the relationship between observed and predicted 
stand daily ETR, with confidence interval represented with the grey dashed lines; the dashed red line is the 1:1 
line. See Table S11 associated statistics. Color code for the seasons as follows:  
  ,Winter;    ,Spring;    ,Summer;    ,Autumn 
 

Pearson Correlation : 0.63***

Mean Deviation : 0.8

RMSE : 2.28

Nobs : 1319

Pearson Correlation : 0.79***

Mean Deviation : - 0.24

RMSE : 1.09
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Mean Deviation : 0.03

RMSE : 0.84
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Pearson Correlation : 0.48***

Mean Deviation : - 0.17

RMSE : 0.91

Nobs : 4739

Fig. X | Predicted versus observed
daily real evapotranspiration (ETR).
For each simulation site, the plain blue
line is the regression line of the linear
model of the relationship between
observed and predicted stand daily
ETR, with confidence interval
represented with the grey dashed lines;
the dashed red line is the 1:1 line. See
Annex X for definition of associated
statistics. Colour code for the seasons
as follows :
,Winter;    ,Spring;    ,Summer;    ,Autumn
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Pearson Correlation : 0.92***

Mean Deviation : - 46.98

RMSE : 56.37
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Mean Deviation : 15.4

RMSE : 25.7
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Pearson Correlation : 0.86***

Mean Deviation : 1.03

RMSE : 10.5

Nobs : 2232

Fig. X | Predicted versus observed
soil water quantity (SWC). For each
simulation site, the plain blue line is
the regression line of the linear model
of the relationship between observed
and predicted SWC, with confidence
interval represented with the grey
dashed lines; the dashed red line is
the 1:1 line. See Annex X for definition
of associated statistics. Colour code
for the seasons as follows :
,Winter;    ,Spring;    ,Summer;    ,Autumn

Pearson Correlation : 0.78***

Mean Deviation : - 31.38

RMSE : 83.44

Nobs : 1591

Depth : 0-150 cm Depth : 0-50 cm

Depth : 0-150 cm Depth : 0-150 cm

Figure W7 | Predicted versus observed soil water quantity (SWC). For each simulation site, the plain blue 
line is the regression line of the linear model of the relationship between observed and predicted SWC, with 
confidence interval represented with the grey dashed lines; the dashed red line is the 1:1 line. See Table S12 for 
associated statistics. Color code for the seasons as follows:  
  ,Winter;    ,Spring;    ,Summer;    ,Autumn 
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  2055 

Fig. X | Predicted versus observed
evolution of aggregate daily
species transpiration. For each
simulation site, the blue line depicts
the aggregated daily transpiration
(mm) generated by PHOREAU from all
the trees of the given species. The red
line depicts the observed daily
transpiration value for this species,
upscaled from sapflow measurements
made for individual trees using stand
LAI and species leaf area to sapwood
area ratios.

Figure W8 | Predicted versus observed evolution of aggregate daily species transpiration. For each 
simulation site, the blue line depicts the aggregated daily transpiration (mm) generated by PHOREAU from 
all the trees of the given species. The red line depicts the observed daily transpiration value for this species, 
upscaled from sapflow measurements made for individual trees using stand LAI and species leaf area to 
sapwood area ratios.  
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Pearson Correlation : 0.81***
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RMSE : 0.52
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No Data
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Mean Deviation : - 0.15

RMSE : 1.68
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Mean Deviation : - 0.09

RMSE : 0.36

Nobs : 3027

Pearson Correlation : 0.69***

Mean Deviation : - 0.27

RMSE : 0.52
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Fig. X | Predicted versus observed
species aggregate daily
transpirations. For each simulation
site, the plain blue line is the
regression line of the linear model of
the relationship between observed and
predicted species aggregate daily
transpiration (mm), with confidence
interval represented with the grey
dashed lines; the dashed red line is
the 1:1 line. See Annex X for definition
of associated statistics. Colour code
for the seasons as follows :
,Winter;    ,Spring;    ,Summer;    ,Autumn

Figure W9 | Predicted versus observed species aggregate daily transpirations. For each simulation site, 
the plain blue line is the regression line of the linear model of the relationship between observed and predicted 
species aggregate daily transpiration (mm), with confidence interval represented with the grey dashed lines; 
the dashed red line is the 1:1 line. See Table S8 for associated statistics. Color code for the seasons as follows:  
  ,Winter;    ,Spring;    ,Summer;    ,Autumn 
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Pearson Correlation : 0.95***

Mean Deviation : - 0.67

RMSE : 0.8

Nobs : 88

Pearson Correlation : 0.83*

Mean Deviation : 0.018

RMSE : 0.53
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Pearson Correlation : 0.78***

Mean Deviation : 0.61

RMSE : 1.16

Nobs : 93

Pearson Correlation : 0.65***

Mean Deviation : -0.08

RMSE : 0.25
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Fig. X | Predicted versus observed
daily stem water potential. For each
dominant species of the four simulation
sites, each point represents a day with
water potential observations (mPa),
plotted against its corresponding
predicted value by the PHOREAU
model. For Puéchabon, Font Blanche
and Barbeau minimum daily water
potential is plotted, while the predawn
potentials are shown for the Hesse site.
The plain blue line is the regression line
of the linear model of the relationship
between observed and predicted water
potential, with confidence interval
represented with the grey dashed lines;
the dashed red line is the 1:1 line. See
Annex X for definition of associated
statistics. Colour code for the seasons
as follows :
,Winter;    ,Spring;    ,Summer;    ,Autumn

Figure W10 | Predicted versus observed daily stem water potential. For each dominant species of the four 
simulation sites, each point represents a day with water potential observations (mPa), plotted against its 
corresponding predicted value by the PHOREAU model. For Puéchabon, Font Blanche and Barbeau minimum 
daily water potential is plotted, while the predawn potentials are shown for the Hesse site.  The plain blue line 
is the regression line of the linear model of the relationship between observed and predicted water potential, 
with confidence interval represented with the grey dashed lines; the dashed red line is the 1:1 line. See Table 
S10 for associated statistics. Color code for the seasons as follows:  
  ,Winter;    ,Spring;    ,Summer;    ,Autumn 
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Figure W11 | Regressions of PHOREAU stand 
basal area increment (BAI) prediction errors 
against site characteristics. For each of the 340 
simulation inventories,  the mean annual BAI 
prediction error,  color coded by site dominant species 
(see legend in bottom left) is plotted against : (a) 
Mean annual degree day sum (°C); (b) mean annual 
temperature (°C); (c) mean annual precipitation sum 
(mm/year); (d) soil maximum available water 
capacity (cm); (e) length of simulation; (f) initial 
inventory basal area (m2/ha). (g) initial stand density 
(trees/ha). The plain blue line is the regression line of 
the linear model of the relationship between 
prediction error and stand characteristic, with slope 
value and significance in top left, along with Pearson 
correlation. 
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Simulation with Daily+Fixes+Shape+SLA+Pheno+Density ForCEEPS model

Pearson correlation : 0.299***
RMSE : 0.651
Average Bias : – 0.027
n : 40

C. betulus (1)

Q. petraea (18)
F. sylvatica (14) 

Q. robur (7)

Fig. X | Projected (by PHOREAU) against observed litter leaf area index (LAI) for available
RENECOFOR inventories. The y-axis shows the LAI predicted by the model from the stand inventory at
the start of the simulation, while the x-axis represents the LAI value infered from litter collection for the
maching coordinate and closest available year. Stand points are color coded by dominant species (see
legend in bottom left). The size of points shows inventory basal area. The dashed red-line is the 1:1 line;
the black full line represent the regression line of the linear model between observed and predicted LAI,
with confidence interval represented by the grey shaded area. Associated statistics in top left.
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Figure W12 | Predicted (by PHOREAU) against observed litter leaf area index (LAI) for available 
RENECOFOR inventories. The y-axis shows the LAI predicted by the model from the stand inventory 
at the start of the simulation, while the x-axis represents the LAI value infered from litter collection for 
the maching coordinate and closest available year. Stand points are color coded by dominant species (see 
legend in bottom left). The size of points shows inventory basal area. The dashed red-line is the 1:1 line; 
the black full line represent the regression line of the linear model between observed and predicted LAI, 
with confidence interval represented by the grey shaded area. Associated statistics in Table S7. 
 

https://doi.org/10.5194/egusphere-2025-2110
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 80 

 
 
 
 

Pearson correlation : 0.621***

RMSE : 0.00129
Average Bias : 0.051
n : 81655

C. sativa (1389)
C. betulus (6472)
U. glabra (61)

T. baccata (2)
S. aucuparia (140)
S. aria (72)
S. alba (25) 

Q. ilex (958)
P. menziesii (1190)
P. tremula (45)
Pop. nigra (4)
P. sylvestris (15152)
P. pinaster (2515)

P. halepensis (289)

P. abies (11388)

F. excelsior (477) 
A. platanoides (20) 

A. incana (14)

A. pseudoplatan. (496)

A. campestre (85) 

A. glutinosa (10) T. cordata (100)

Q. robur (3891)

P. cembra (23)

L. decidua (780)

B. pendula (1165)
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P. montana (1) Q. petraea (5128)

Fig. S1 | Projected (by ForCEEPS) against observed mean annual tree basal increments (BAI) for all
simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded
by species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression
lines of the linear model between observed and predicted tree productivity, with confidence intervals
represented by the grey shaded area (in black the overall regression; coloured lines for species-specific
regressions). Species-specific regressions are only shown for stand dominant species (in bold in legend).
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S1.

S16 Figure W13 | Predicted (by ForCEEPS) against observed mean annual tree basal increments (BAI) for 
all simulated trees over the 340 RENECOFOR and ICP II validation inventories. Tree points are color coded 
by species (see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines 
of the linear model between observed and predicted tree productivity, with confidence intervals represented by 
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions). Species-
specific regressions are only shown for stand dominant species (in bold in legend). Associated statistics for the 
global simulation in top left, while species-specific statistics can be found in Table S1. 
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Fig. S2 | Projected (by ForCEEPS) against observed mean annual stand basal increments (BAI) for
all 340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species
(see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the
linear model between observed and predicted stand productivity, with confidence intervals represented by
the grey shaded area (in black the overall regression; coloured lines for species-specific regressions).
Associated statistics for the global simulation in top left, while species-specific statistics can be found in
Table S2.

S17 Figure W14 | Predicted (by ForCEEPS) against observed mean annual stand basal increments (BAI) 
for all 340 RENECOFOR and ICP II validation inventories. Stand points are color coded by dominant species 
(see legend above). The dashed red-line is the 1:1 line; other full lines represent the regression lines of the 
linear model between observed and predicted stand productivity, with confidence intervals represented by the 
grey shaded area (in black the overall regression; coloured lines for species-specific regressions). Associated 
statistics for the global simulation in top left, while species-specific statistics can be found in Table S2. 
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Fig. S3 | Projected (by ForCEEPS) against observed satellite leaf area index (LAI) for all 340
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from the
stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for the
maching coordinate and inventory year, averaged between July, August and September. Stand points are
color coded by dominant species (see legend in bottom left). The size of points shows inventory basal
area. The dashed red-line is the 1:1 line; the black full line represent the regression line of the linear model
between observed and predicted LAI, with confidence interval represented by the grey shaded area.
Associated statistics in top left.
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S18 Figure W15 | Predicted (by ForCEEPS) against observed satellite leaf area index (LAI) for all 340 
RENECOFOR and ICP II validation inventories. The y-axis shows the LAI predicted by the model from 
the stand inventory at the start of the simulation, while the x-axis represents the PROBA-V LAI value for 
the maching coordinate and inventory year, averaged between July, August and September. Stand points 
are color coded by dominant species (see legend in bottom left). The size of points shows inventory basal 
area. The dashed red-line is the 1:1 line; the black full line represent the regression line of the linear 
model between observed and predicted LAI, with confidence interval represented by the grey shaded 
area. Associated statistics in Table S6. 
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Fig. X | Projected community compositions after long-term PHOREAU simulations. For the 250
tested sites of the PNV validation, each pie graph represents the basal area repartition of simulated
species after 2000 years (see legend in bottom left for species color code). Prediction success (according
to PNV assumed dominant species) is represented by the color of the circle’s outer border. Green border :
sites for which the dominating species was accurately predicted. Yellow border : sites for which the
second-ranked species was accurately predicted, but not the dominating species. Red border : sites for
which neither the first-ranked nor second-ranked species were accurately predicted.

Accurate prediction (62%)
Partial prediction (24%)
False prediction (14%)

Figure W16 | Projected community compositions after long-term PHOREAU simulations. For the 250 
tested sites of the PNV validation, each pie graph represents the basal area repartition of simulated species after 
2000 years (see legend in bottom left for species color code). Prediction success (according to PNV assumed 
dominant species) is represented by the color of the circle’s outer border. Green border: sites for which the 
dominating species was accurately predicted. Yellow border: sites for which the second-ranked species was 
accurately predicted, but not the dominating species. Red border: sites for which neither the first-ranked nor 
second-ranked species were accurately predicted. 
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Fig. S4 | Diversity of height-to-diameter ratios among
study sites. For each species with sufficient data, for
each of the 245 RENECOFOR and ICP II study sites,
points show measured height against circumference of
individual trees present in PHOREAU simulation
inventories. Full lines, colored-coded by site, represent
local-regression curves used to calculate height for trees
with no height measurement. Height-to-diameter curves
were interpolated for each plot using a LOESS method n
tree measurements (not limited to simulation periods).
The dashed red line represents the ForCEEPS species
height-to-diameter formula. Predicted tree heights from
the formula were evaluated against measured tree
heights to produce associated statistics, detailed in Table
X.
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Figure S20 | Diversity of height-to-diameter ratios 
among study sites. For each species with sufficient data, 
for each of the 245 RENECOFOR and ICP II study sites, 
points show measured height against circumference of 
individual trees present in PHOREAU simulation 
inventories. Full lines, colored-coded by site, represent 
local-regression curves used to calculate height for trees 
with no height measurement. Height-to-diameter curves 
were interpolated for each plot using a LOESS method on 
tree measurements (not limited to simulation periods). The 
dashed red line represents the ForCEEPS species height-
to-diameter formula. Predicted tree heights from the 
formula were evaluated against measured tree heights to 
produce associated statistics, detailed in Table S3. 
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7 Code and data availability 
 
Species parameters, as well as the dataset used for model evaluation at the European scale (climate and soil files, 

as well as tree inventories) can be downloaded from the following open access Zenodo archive: 2140 

https://doi.org/10.5281/zenodo.15241618 (Postic and Morin, 2025a). Data used for the evaluation of eco-

physiological processes at the local scale can be obtained upon request from the respective ICOS site PIs. 

 

A standalone version of the PHOREAU model, with an example dataset corresponding to the four ICOS sites used 

in the ecophysiological validation, can be downloaded from the following open access Zenodo archive: 2145 

https://doi.org/10.5281/zenodo.15260689 (Postic and Morin, 2025b).  
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